A New, Better Way to Optimize a Signal Chain with a Continuous-Time Sigma-Delta Converter Benjamin Reiss,現場應用工程師 問題: 為何應考慮使用CTSD ADC來改善我的信號鏈設計? 答案: 相比傳統架構,CTSD拓撲能夠優化信號鏈。 當今許多應用要求小尺寸,同時保持同樣的性能。開發人員經常面臨如何實現這一目標的問題并且經常要做出妥協。舉例來說,通過犧牲噪聲性能或精度來減小尺寸。本文探討使用連續時間Σ-Δ型(CTSD)轉換器優化設計、降低物料(BOM)成本和減小尺寸的新型方法。 要讓所需的傳感器或信號達到最佳效果,必須保證信號鏈中的所有元件配合出色。從傳感器到模數轉換器(ADC)通常使用幾個分立元件。除了傳感器和ADC,還經常使用儀表放大器、ADC驅動器、基準電壓源緩沖器和濾波器。尤其要注意的是,ADC驅動器的選擇和濾波器設計通常是造成誤差的來源,但這兩項通常會被低估。 圖1.(A) 離散時間ADC拓撲,(b) 連續時間Σ-Δ型轉換器,(c) 通過開關電容輸入級的電荷注入反沖 圖2.DTSD和CTSD的尺寸對比,顯示使用CTSD ADC可以明顯減小尺寸 優化設計、降低BOM成本并減小尺寸的一種方法是使用μModule®器件。這些器件是高度集成的解決方案,包含轉換器、緩沖器和無源組件。采用這種新型CTSD技術,就可以直接驅動ADC,無需將放大器用作緩沖器。此外,這種新拓撲還可以簡化濾波器設計。圖1顯示傳統的離散時間ADC (DT-ADC)和CTSD轉換器之間的區別。與傳統設計相比,CTSD設計可以將尺寸縮減68%。 在傳統的DT-ADC(例如SAR ADC或Σ-Δ ADC)中,會使用開關電容拓撲。ADC和參考輸入端就是這種情況。這會使“采樣”和“保持”兩個階段之間出現差分。它們分別對應“保持”電容的充電和放電。所以,由于寄生特性(電荷注入反沖),必須提供足夠電流,以便進行充電、放電以及電荷吸收。許多傳感器無法提供如此高的電流,因此需要進行緩沖。除了此功能之外,驅動器的速度還必須足夠快(建立時間短,擺率高),以便解決“采樣”階段(參見圖1c)結束時穩定輸出,從而避免給目標信號帶來更多誤差。所以,對ADC驅動器的要求非常高。 CTSD轉換器具有阻性輸入,可以直接由傳感器驅動。如果傳感器無法驅動ADC(例如,如果傳感器的阻抗非常高),可以插入一個簡單的放大器來實現阻抗轉換。 CTSD還有一個優勢,就是它本身具有抗混疊濾波器(低通濾波器)特性。傳統拓撲需要在輸入端使用低通濾波器來濾除高頻干擾信號。這是因為奈奎斯特準則要求采樣速率必須至少為所需信號頻率的2倍。如果采樣速率過低,可能會出現混疊,導致干擾噪聲進入信號。對于CTSD轉換器本身的抗混疊濾波器特性,一種解釋是:采樣不是發生在調制器輸入端,而是發生在環路濾波器之后。 結論 CTSD拓撲為優化信號鏈提供了傳統架構之外的另一種新的解決方案。此外,如果非常注重上市時間、BOM或尺寸因素,那么AD4134等ADC產品將會是一個非常不錯的選擇。它們具有阻性輸入且本身自帶濾波器屬性,可以幫助簡化和優化許多設計。在許多應用中,可以無需使用ADC驅動器、濾波器設計中的無源組件和基準電壓源緩沖器。《模擬對話》刊登了有關該主題的系列文章,詳細闡述了上述優勢以及許多其他特性。 作者簡介 自2017年4月至今,Benjamin Reiss一直在ADI德國慕尼黑公司工作。他于2016年畢業于埃爾朗根-紐倫堡大學,獲得納米技術碩士學位。完成ADI公司的培訓生項目后,他加入區域團隊,擔任現場應用工程師,為許多客戶提供支持。聯系方式:benjamin.reiss@analog.com。 |