隨著DSP(數字信號處理器)的廣泛應用,基于DSP的高速信號處理PCB板的設計顯得尤為重要。在PCB設計中,布局是一個重要的環節,布局結果的好壞將直接影響布線的效果,因此可以這樣認為,合理的布局是PCB設計成功的第一步。 對應用于實時圖像信號檢測的高速DSP圖像處理板的PCB板,為使DSP系統獲得最佳性能,優化元器件的布局是非常重要的。一般而言,首先放置DSP、Flash、SRAM和CPLD器件,這需慎重考慮走線空間,然后按功能獨立原則放置其他IC,最后考慮I/O口的放置。結合以上布局再考慮PCB的尺寸:若尺寸過大,會使印制線條太長,阻抗增加,抗噪聲能力下降,制板費用也會增加;如果PCB太小,則散熱不好,而且空間有限,鄰近的線條容易受到干擾。所以要根據實際需要選擇器件,結合走線空間,大體上算出PCB的大小。在對DSP系統布局時,以下器件的擺放位置要特別注意。 (1) 高速信號布局 在整個DSP系統中,DSP與Flash、SRAM之間是主要的高速數字信號線,所以器件之間的距離要盡量近,其連線盡可能短,并且直接連接。因此,為了減小傳輸線對信號質量的影響,高速信號走線應盡量短。還要考慮到很多速度達到幾百MHz的DSP芯片,需要做蛇型繞線(delay tune)。 (2) 數模器件布局 在DSP系統中大多不是單一的功能電路,大量應用了CM0S的數字器件和數字模擬混合器件,所以要將數/模分開布局。模擬信號器件盡量集中,使模擬地能夠在整個數字地中間畫出一個獨立的屬于模擬信號的區域,避免數字信號對模擬信號的干擾。對于一些數模混合器件,如D/A轉換器,傳統上將其看作模擬器件,把它放在模擬地上,并且給其提供一個數字回路,讓數字噪聲反饋回信號源,減小數字噪聲對模擬地的影響。 (3) 時鐘的布局 對于時鐘、片選和總線信號,應盡量遠離I/O線和接插件。DSP系統的時鐘輸入,很容易受到干擾,對它的處理非常關鍵。要始終保證時鐘產生器盡量靠近DSP芯片,使時鐘線盡量短。時鐘晶體振蕩器的外殼最好接地。 (4)退耦布局 為了減小集成電路芯片電源上的電壓瞬時過沖,對集成電路芯片加退耦電容,這樣可以有效地去除電源上毛刺的影響,并減少在PCB上的電源環路反射。加退耦電容可以旁路掉集成電路器件的高頻噪聲,還可以作為儲能電容,提供和吸收集成電路開關門瞬間的充放電能。 在DSP系統中,對各個集成電路安放退耦電容,像DSP、SRAM、Flash等,在芯片的每個電源和地之間添加,而且要特別注意,退耦電容要盡量靠近電源提供端(source)和IC的零件腳(pin)。保證從電源提供端(sotlrce端)和進入IC的電流的純凈,并且盡量能讓噪音的路徑縮短。如圖2所示,處理電容時,使用大的過孔或多個過孔,且過孔到電容間的連線應盡量短、粗。2個過孔距離遠時,因為路徑太大,不好;最好的就是退耦電容的2個過孔越近越好,可以使噪聲以最短路徑到地。 另外在電源輸入端或電池供電的地方加上高頻電容是非常有利的。一般情況下,對退耦電容的取值不是很嚴格,一般按C=1/f,計算,即頻率為10 MHz時取0.1μF的電容。 (5) 電源的布局 在進行DSP系統開發時,電源需要慎重考慮。因為一些電源芯片發熱量很大,應優先安排在利于散熱的位置,要與其他元器件隔開一定距離。可以利用加散熱片或在器件下面鋪銅來進行散熱處理。注意在開發板底層不要放置發熱組件。 (6) 其他注意 對于DSP系統其他組件的布局應該盡量考慮到焊接方便、調試方便和美觀等要求。如對電位器、可調電感線圈、可變電容器、撥碼開關等可調器件要結合整體結構放置。對于超過15 g的器件要加固定支架再焊接,特別注意要留出PCB的定位孔及固定支架所占用的位置。PCB邊緣的元器件離PCB板邊距離一般不要小于2 mm,PCB最好為矩形,長寬比為3:2或4;3。 以上即為DSP系統布局需要注意和考慮的幾點,更多行業信息可查閱快點學院訂閱號:eqpcb_cp。 |