国产毛片a精品毛-国产毛片黄片-国产毛片久久国产-国产毛片久久精品-青娱乐极品在线-青娱乐精品

Key Issues in RF and RFIC Circuit Design

發布時間:2010-11-24 23:08    發布者:x1346
關鍵詞: Circuit , Design , issues , Key , RFIC
Key Issues in RF and RFIC Circuit Design.pdf (2.82 MB)
Contents
Chapter 1 Importance of Impedance Matching 1
1.1 Difference between RF and Digital Circuit Design 1
1.1.1 Case # 1: Digital Circuits at Low Data Rate 2
1.1.2 Case # 2: Digital Circuits at High Data Rate 5
1.2 Significance of Impedance Matching 7
1.2.1 Power Transportation from a Source to a Load 7
1.2.2 Maximizing of Power Transportation without Phase Shift 8
1.2.3 Conjugate Impedance Matching and Voltage Reflection Coefficient 10
1.2.4 Impedance Matching Network 11
1.3 Problems due to Unmatched Status of Impedance 14
1.3.1 General Expression of Power Transportation 14
1.3.2 Power Instability and Additional Power Loss 17
1.3.3 Additional Distortion and Quasi-Noise 19
1.3.4 Power Measurement 22
1.3.5 Power Transportation and Voltage Transportation 24
1.3.6 Burning of a Transistor 28
References 29
Chapter 2 Impedance Matching 30
2.1 Impedance Measured by Small Signal 30
2.1.1 Impedance Measured by S Parameter Measurement 30
2.1.2 The Smith Chart: Impedance and Admittance Coordination 31
2.1.3 Accuracy of Smith Chart 35
2.1.4 Relationship between the Impedance in Series and in Parallel 36
2.2 Impedance Measured by Large Signal 39
2.3 Impedance Matching 42
2.3.1 One Part Matching Network 42
2.3.2 Recognition of Regions in a Smith Chart 44
2.3.3 Two Parts Matching Network 45
2.3.4 Two Parts Upward and Downward Impedance Transformer 55
2.3.5 Three Parts Matching Network and Impedance Transformer 59
2.3.5.1 Topology Limitation of Two Parts Matching Network 59
2.3.5.2 Π Type Matching Network 61
2.3.5.3 T Type Matching Network 67
2.4 Some Useful Schemes for Impedance Matching 73
2.4.1 Designs and Tests when ZL is not 50 Ω 73
2.4.2 Conversion between “T” and “Π” Type Matching Network 74
2.4.3 Parts in a Matching Network 76
2.4.4 Impedance Matching between Power Transportation Units 77
2.4.5 Impedance Matching for a Mixer 78
References 79
Chapter 3 RF Grounding 81
3.1 A True Story 81
3.2 Three Components for RF Grounding 83
3.2.1 “Zero” Capacitors 83
3.2.2 Micro Strip Line 87
3.2.3 RF Cable 92
3.3 Examples of RF grounding 94
3.3.1 Test PCB 94
3.3.1.1 Small Test PCB 95
3.3.1.1.1 Basic Types of Test PCB 95
3.3.1.1.2 RF Grounding with a Rectangular Metallic Frame 99
3.3.1.1.3 An Example 100
3.3.1.2 Large Test PCB 103
3.3.1.2.1 RF Grounding by “Zero” Chip Capacitors 103
3.3.1.2.2 RF Grounding by a Runner or a Cable
with Half or Quarter Wavelength 105
3.3.2 Isolation between Input and Output in a Mixer or an Up-converter 108
3.3.3 Calibration for Network Analyzer 109
3.4 RF Grounding for Reduction of Return Current Coupling 111
3.4.1 A Circuit Built by Discrete Parts on a PCB 111
3.4.2 RFICs 114
References 118
Chapter 4 Equivalent Circuits of Passive Chip Parts 119
4.1 Modeling of Passive Chip Parts 120
4.2 Characterizing of Passive Chip Parts by Network Analyzer 122
4.3 Extraction from the Measurement by Network Analyzer 124
4.3.1 Chip Capacitor 124
4.3.2 Chip Inductor 129
4.3.3 Chip Resistor 135
4. 4 Summary 138
References
Chapter 5 Single-ended Stage and Differential Pair 140
5.1 Basic Single-ended Stage 140
5.1.1 General Description 140
5.1.2 Small Signal Model of a Bipolar Transistor 142
5.1.2.1 Impedance of a CE (Common Emitter) Device 144
5.1.2.2 Impedance of a CB (Common Base) Device 146
5.1.2.3 Impedance of a CC (Common Collector) Device 149
5.1.2.4 Comparison between CE, CB, and CC Device 151
5.1.3 Small Signal Model of a MOSFET 152
5.1.3.1 Impedance of a CS (Common source) Device 155
5.1.3.2 Impedance of a CG (Common gate) Device 156
5.1.3.3 Impedance of a CD (Common drain) Device 157
5.1.3.4 Comparison between CS, CG, and CD Device 158
5.2 Differential pair 160
5.2.1 DC Transfer Characteristic 160
5.2.1.1 DC Transfer Characteristic of a Bipolar Differential Pair 160
5.2.1.2 DC Transfer Characteristic of a CMOS Differential Pair 162
5.2.2 Small Signal Characteristic 163
5.2.3 Improvement of CMRR 171
5.2.4 Increase of Voltage Swing 173
5.2.5 Cancellation of Interference 174
5.2.6 Noise in a Differential Pair 176
5.3 Apparent Difference between Single-ended Stage and
Differential pair 181
5.4 DC Offset 184
5.4.1 DC Offset in a Single-ended Device 184
5.4.2 Zero DC Offset in a Pseudo-Differential Pair 186
5.4.3 Why “Zero” IF or Direct Conversion 188
5.4.4 DC Offset Cancellation 190
5.4.4.1 “Chopping” Mixer 190
5.4.4.2 DC Offset Calibration 196
5.4.4.3 Hardware Schemes 197
References 199
Chapter 6 Balun 201
6.1 Coaxial Cable Balun 201
6.2 Ring Micro Strip Line Balun 203
6.3 Transformer Balun 206
6.4 Transformer Balun Composed by Two
Stacked 2x2 Transformers 209
6.5 LC Balun 213
References 222
Chapter 7 Tolerance Analysis 223
7.1 Importance of Tolerance Analysis 223
7.2 Fundamentals of Tolerance Analysis 225
7.2.1 Tolerance and Normal Distribution 225
7.2.2 6σ, Cp, and Cpk 230
7.2.3 Yield Rate and DPU 234
7.2.4 Poisson Distribution 237
7.3 Approach to 6σ Design and Production 238
7.4 An Example: Tunable Filter Design 243
7.4.1 Description of the Tunable Filter Design 244
7.4.2 Monte-Carlo Analysis 245
7.5 Appendix: Table of the Normal Distribution 251
References
Chapter 8 Prospect of RFIC Design 253
8.1 History of RFIC development 253
8.2 Isolation between Blocks in an RFIC 256
8.2.1 Definition and Measurement of Isolation 256
8.2.2 Isolation Technology 257
8.3 Low Q Value of Spiral Inductor 272
8.3.1 Skin Effect 273
8.3.2 Attenuation due to Substrate 274
8.3.3 Flux Leakage 275
8.3.4 Flux Cancellation 277
8.3.5 A Possible Solution --- Negative Resistance Compensation 280
8.3.5.1 Negative Resistance Generator with a FET 282
8.3.5.2 Negative Resistance Generator with Transformer 283
8.4 Layout 284
8.4.1 Runners 284
8.4.2 Parts 290
8.4.3 Variable Parts in RFIC 292
8.4.4 Symmetry 294
8.4.5 Via 295
8.4.6 Free Space on the Die 296
8.5 Two Challenges in an RFIC or SOC Design 297
8.5.1 Isolation 297
8.5.2 High Q Inductor for IC 298
References
Chapter 9 Noise, Gain, and Sensitivity of a Receiver 301
9.1 Noise in a Circuit Block or a System 301
9.1.1 Noise Sources 301
9.1.1.1 Shot Noise 301
9.1.1.2 Thermal Noise 302
9.1.1.3 Flicker Noise (1/f Noise) 303
9.1.2 Definition of Noise Figure 304
9.1.3 Noise Figure in a Noisy Two Port Block 305
9.1.4 Minimum Noise Figure and Equivalent Noise Resistor 310
9.1.4.1 Noise in a MOSFET 310
9.1.4.2 Noise in a Bipolar Device 311
9.2 Gain 314
9.2.1 Definition of Power Gains 314
9.2.2 Power Gain and Voltage Gain 318
9.3 Sensitivity 319
9.3.1 Standard Noise Source 319
9.3.2 Equivalent Input Noise 320
9.3.3 Sensitivity of a Receiver 320
References
Chapter 10 Non-linearity and Spurious Products 323
10.1 Spurious products 323
10.1.1 Harmonics 323
10.1.2 Complicated Spurious Products 325
10.2 IP (Intercept Point) and IMR (Inter-Modulation Rejection) 328
10.3 3rd order Intercept Point and Spurious Product 331
10.4 1 dB Compression Point and IP3 335
10.5 2nd Order Intercept Point and Spurious Product 337
10.6 Distortion 339
References
Chapter 11 Cascaded Equations and System
Analysis 342
11.1 Cascaded Equation for Power Gain 342
11.2 Cascaded Equation for Noise Figure 345
11.3 Cascaded Equation for Intercept Point 348
11.4 Application of Cascaded Equations
in the System Analysis 357
References
Chapter 12 From Analog to Digital
Communication system 360
12.1 Modulation in an Analog Communication System 360
12.2 Encoding in a Digital Communication System 365
12.2.1 NRZ (Non-Return to Zero) and Manchester Format 365
12.2.2 BPSK (Binary Phase Shift Keying) 367
12.2.3 QPSK (Quadrature Phase Shift Keying), OQPSK, MSK 369
12.2.4 FSK (Frequency Shift Keying), CPFSK 373
12.3 Decoding and Bit-Error Probability 374
12.4 Error Correction Schemes 377
References
本文地址:http://m.qingdxww.cn/thread-41554-1-1.html     【打印本頁】

本站部分文章為轉載或網友發布,目的在于傳遞和分享信息,并不代表本網贊同其觀點和對其真實性負責;文章版權歸原作者及原出處所有,如涉及作品內容、版權和其它問題,我們將根據著作權人的要求,第一時間更正或刪除。
rinllow3 發表于 2010-11-25 14:59:00
thanks
jjj222777 發表于 2010-11-25 18:34:37
謝謝分享
zhaokuiman 發表于 2011-4-8 13:46:49
ding
tony02778 發表于 2012-3-12 06:51:43
多謝
tony02778 發表于 2012-3-12 06:51:59
超牛的
jimcmwang 發表于 2014-10-30 12:25:14
Contents
Chapter 1 Importance of Impedance Matching 1
1.1 Difference between RF and Digital Circuit Design 1
1.1.1 Case # 1: Digital Circuits at Low Data Rate 2
1.1.2 Case # 2: Digital Circuits at High Data Rate 5
1.2 Significance of Impedance Matching 7
1.2.1 Power Transportation from a Source to a Load 7
1.2.2 Maximizing of Power Transportation without Phase Shift 8
1.2.3 Conjugate Impedance Matching and Voltage Reflection Coefficient 10
1.2.4 Impedance Matching Network 11
1.3 Problems due to Unmatched Status of Impedance 14
1.3.1 General Expression of Power Transportation 14
1.3.2 Power Instability and Additional Power Loss 17
1.3.3 Additional Distortion and Quasi-Noise 19
1.3.4 Power Measurement 22
1.3.5 Power Transportation and Voltage Transportation 24
1.3.6 Burning of a Transistor 28
References 29
Chapter 2 Impedance Matching 30
2.1 Impedance Measured by Small Signal 30
2.1.1 Impedance Measured by S Parameter Measurement 30
2.1.2 The Smith Chart: Impedance and Admittance Coordination 31
2.1.3 Accuracy of Smith Chart 35
2.1.4 Relationship between the Impedance in Series and in Parallel 36
2.2 Impedance Measured by Large Signal 39
2.3 Impedance Matching 42
2.3.1 One Part Matching Network 42
2.3.2 Recognition of Regions in a Smith Chart 44
2.3.3 Two Parts Matching Network 45
2.3.4 Two Parts Upward and Downward Impedance Transformer 55
2.3.5 Three Parts Matching Network and Impedance Transformer 59
2.3.5.1 Topology Limitation of Two Parts Matching Network 59
2.3.5.2 Π Type Matching Network 61
2.3.5.3 T Type Matching Network 67
2.4 Some Useful Schemes for Impedance Matching 73
2.4.1 Designs and Tests when ZL is not 50 Ω 73
2.4.2 Conversion between “T” and “Π” Type Matching Network 74
2.4.3 Parts in a Matching Network 76
2.4.4 Impedance Matching between Power Transportation Units 77
2.4.5 Impedance Matching for a Mixer 78
References 79
Chapter 3 RF Grounding 81
3.1 A True Story 81
3.2 Three Components for RF Grounding 83
3.2.1 “Zero” Capacitors 83
3.2.2 Micro Strip Line 87
3.2.3 RF Cable 92
3.3 Examples of RF grounding 94
3.3.1 Test PCB 94
3.3.1.1 Small Test PCB 95
3.3.1.1.1 Basic Types of Test PCB 95
3.3.1.1.2 RF Grounding with a Rectangular Metallic Frame 99
3.3.1.1.3 An Example 100
3.3.1.2 Large Test PCB 103
3.3.1.2.1 RF Grounding by “Zero” Chip Capacitors 103
3.3.1.2.2 RF Grounding by a Runner or a Cable
with Half or Quarter Wavelength 105
3.3.2 Isolation between Input and Output in a Mixer or an Up-converter 108
3.3.3 Calibration for Network Analyzer 109
3.4 RF Grounding for Reduction of Return Current Coupling 111
3.4.1 A Circuit Built by Discrete Parts on a PCB 111
3.4.2 RFICs 114
References 118
Chapter 4 Equivalent Circuits of Passive Chip Parts 119
4.1 Modeling of Passive Chip Parts 120
4.2 Characterizing of Passive Chip Parts by Network Analyzer 122
4.3 Extraction from the Measurement by Network Analyzer 124
4.3.1 Chip Capacitor 124
4.3.2 Chip Inductor 129
4.3.3 Chip Resistor 135
4. 4 Summary 138
References
Chapter 5 Single-ended Stage and Differential Pair 140
5.1 Basic Single-ended Stage 140
5.1.1 General Description 140
5.1.2 Small Signal Model of a Bipolar Transistor 142
5.1.2.1 Impedance of a CE (Common Emitter) Device 144
5.1.2.2 Impedance of a CB (Common Base) Device 146
5.1.2.3 Impedance of a CC (Common Collector) Device 149
5.1.2.4 Comparison between CE, CB, and CC Device 151
5.1.3 Small Signal Model of a MOSFET 152
5.1.3.1 Impedance of a CS (Common source) Device 155
5.1.3.2 Impedance of a CG (Common gate) Device 156
5.1.3.3 Impedance of a CD (Common drain) Device 157
5.1.3.4 Comparison between CS, CG, and CD Device 158
5.2 Differential pair 160
5.2.1 DC Transfer Characteristic 160
5.2.1.1 DC Transfer Characteristic of a Bipolar Differential Pair 160
5.2.1.2 DC Transfer Characteristic of a CMOS Differential Pair 162
5.2.2 Small Signal Characteristic 163
5.2.3 Improvement of CMRR 171
5.2.4 Increase of Voltage Swing 173
5.2.5 Cancellation of Interference 174
5.2.6 Noise in a Differential Pair 176
5.3 Apparent Difference between Single-ended Stage and
Differential pair 181
5.4 DC Offset 184
5.4.1 DC Offset in a Single-ended Device 184
5.4.2 Zero DC Offset in a Pseudo-Differential Pair 186
5.4.3 Why “Zero” IF or Direct Conversion 188
5.4.4 DC Offset Cancellation 190
5.4.4.1 “Chopping” Mixer 190
5.4.4.2 DC Offset Calibration 196
5.4.4.3 Hardware Schemes 197
References 199
Chapter 6 Balun 201
6.1 Coaxial Cable Balun 201
6.2 Ring Micro Strip Line Balun 203
6.3 Transformer Balun 206
6.4 Transformer Balun Composed by Two
Stacked 2x2 Transformers 209
6.5 LC Balun 213
References 222
Chapter 7 Tolerance Analysis 223
7.1 Importance of Tolerance Analysis 223
7.2 Fundamentals of Tolerance Analysis 225
7.2.1 Tolerance and Normal Distribution 225
7.2.2 6σ, Cp, and Cpk 230
7.2.3 Yield Rate and DPU 234
7.2.4 Poisson Distribution 237
7.3 Approach to 6σ Design and Production 238
7.4 An Example: Tunable Filter Design 243
7.4.1 Description of the Tunable Filter Design 244
7.4.2 Monte-Carlo Analysis 245
7.5 Appendix: Table of the Normal Distribution 251
References
Chapter 8 Prospect of RFIC Design 253
8.1 History of RFIC development 253
8.2 Isolation between Blocks in an RFIC 256
8.2.1 Definition and Measurement of Isolation 256
8.2.2 Isolation Technology 257
8.3 Low Q Value of Spiral Inductor 272
8.3.1 Skin Effect 273
8.3.2 Attenuation due to Substrate 274
8.3.3 Flux Leakage 275
8.3.4 Flux Cancellation 277
8.3.5 A Possible Solution --- Negative Resistance Compensation 280
8.3.5.1 Negative Resistance Generator with a FET 282
8.3.5.2 Negative Resistance Generator with Transformer 283
8.4 Layout 284
8.4.1 Runners 284
8.4.2 Parts 290
8.4.3 Variable Parts in RFIC 292
8.4.4 Symmetry 294
8.4.5 Via 295
8.4.6 Free Space on the Die 296
8.5 Two Challenges in an RFIC or SOC Design 297
8.5.1 Isolation 297
8.5.2 High Q Inductor for IC 298
References
Chapter 9 Noise, Gain, and Sensitivity of a Receiver 301
9.1 Noise in a Circuit Block or a System 301
9.1.1 Noise Sources 301
9.1.1.1 Shot Noise 301
9.1.1.2 Thermal Noise 302
9.1.1.3 Flicker Noise (1/f Noise) 303
9.1.2 Definition of Noise Figure 304
9.1.3 Noise Figure in a Noisy Two Port Block 305
9.1.4 Minimum Noise Figure and Equivalent Noise Resistor 310
9.1.4.1 Noise in a MOSFET 310
9.1.4.2 Noise in a Bipolar Device 311
9.2 Gain 314
9.2.1 Definition of Power Gains 314
9.2.2 Power Gain and Voltage Gain 318
9.3 Sensitivity 319
9.3.1 Standard Noise Source 319
9.3.2 Equivalent Input Noise 320
9.3.3 Sensitivity of a Receiver 320
References
Chapter 10 Non-linearity and Spurious Products 323
10.1 Spurious products 323
10.1.1 Harmonics 323
10.1.2 Complicated Spurious Products 325
10.2 IP (Intercept Point) and IMR (Inter-Modulation Rejection) 328
10.3 3rd order Intercept Point and Spurious Product 331
10.4 1 dB Compression Point and IP3 335
10.5 2nd Order Intercept Point and Spurious Product 337
10.6 Distortion 339
References
Chapter 11 Cascaded Equations and System
Analysis 342
11.1 Cascaded Equation for Power Gain 342
11.2 Cascaded Equation for Noise Figure 345
11.3 Cascaded Equation for Intercept Point 348
11.4 Application of Cascaded Equations
in the System Analysis 357
References
Chapter 12 From Analog to Digital
Communication system 360
12.1 Modulation in an Analog Communication System 360
12.2 Encoding in a Digital Communication System 365
12.2.1 NRZ (Non-Return to Zero) and Manchester Format 365
12.2.2 BPSK (Binary Phase Shift Keying) 367
12.2.3 QPSK (Quadrature Phase Shift Keying), OQPSK, MSK 369
12.2.4 FSK (Frequency Shift Keying), CPFSK 373
12.3 Decoding and Bit-Error Probability 374
12.4 Error Correction Schemes 377
References
liutaow 發表于 2016-10-20 10:28:26
這資料確實不錯,值得一看
您需要登錄后才可以發表評論 登錄 | 立即注冊

廠商推薦

  • Microchip視頻專區
  • Dev Tool Bits——使用MPLAB® Discover瀏覽資源
  • Dev Tool Bits——使用條件軟件斷點宏來節省時間和空間
  • Dev Tool Bits——使用DVRT協議查看項目中的數據
  • Dev Tool Bits——使用MPLAB® Data Visualizer進行功率監視
  • 貿澤電子(Mouser)專區

相關視頻

關于我們  -  服務條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯系我們
電子工程網 © 版權所有   京ICP備16069177號 | 京公網安備11010502021702
快速回復 返回頂部 返回列表
主站蜘蛛池模板: 2019偷偷狠狠的日日 | 一级毛片在播放免费 | 免费看一级a一片毛片 | 在线观看亚洲免费视频 | 99re久久| 落跑甜心电视剧全集免费观看 | 国产精品资源在线观看网站 | 国产一区欧美 | www.香蕉视频在线观看 | 国产精品福利片免费看 | 福利理论片午夜片 | 久九九久福利精品视频视频 | 亚洲女同在线观看 | 日韩视频区 | 日本大片免费观看 | 另类专区亚洲 | 国产欧美一区二区久久 | 国产成人在线视频网站 | 手机在线播放av | 91精品国产高清91久久久久久 | 恐怖片在线观看高清 | 久久亚洲午夜牛牛影视 | 欧美日韩一级黄色片 | 欧美亚洲日本国产综合网 | 亚洲精品第一卡2卡3卡4卡5卡 | 国产成人啪精品午夜在线观看 | 午夜免费观看福利片一区二区三区 | 一区二区成人国产精品 | 四虎永久精品视频在线 | 亚洲国产成人精品激情 | 偷窥自拍亚洲 | 国产高清在线精品一区a | 成人免费网址在线观看黄动漫 | 国内精品在线观看视频 | 国产在线精品一区二区三区 | 亚洲欧美日韩中文字幕在线一区 | 亚欧免费视频一区二区三区 | 免费看黄视频的网站 | 亚洲高清免费 | 亚色中文 | 日日日日日日日 |