隨著亞微米、深亞微米技術(shù)和系統(tǒng)芯片(SOC)技術(shù)的日益成熟,便攜式電子和微型電子產(chǎn)品快速發(fā)展和普及,低電壓工作環(huán)境下的芯片研發(fā)日益受到關(guān)注。電流基準(zhǔn)源是模擬集成電路中最重要的模塊之一,廣泛應(yīng)用于數(shù)模、模數(shù)轉(zhuǎn)換器、濾波器和單片式傳感器中,因此,低壓、低功耗、高精度、穩(wěn)定的電流基準(zhǔn)源的設(shè)計(jì)成為模擬IC設(shè)計(jì)的熱點(diǎn)。 目前,國(guó)外很多電流基準(zhǔn)源的電源電壓達(dá)到1V甚至更低。文獻(xiàn)[1-2]分別用本征MOS管和SIMOX工藝實(shí)現(xiàn)低壓下的電流基準(zhǔn)源,但文獻(xiàn)的電源電壓高、基準(zhǔn)電流溫度系數(shù)比較大;文獻(xiàn)的基準(zhǔn)電流溫度系數(shù)比較小,但不是普通的CMOS工藝,結(jié)構(gòu)復(fù)雜,功耗大;文獻(xiàn)雖然在1.1 V電源電壓下的功耗很小,但是工作溫度范圍比較小、溫度系數(shù)很大。所以設(shè)計(jì)的難點(diǎn)就是要在普通CMOS工藝下實(shí)現(xiàn)低壓、低功耗且結(jié)構(gòu)簡(jiǎn)單的高性能電流基準(zhǔn)源。 1 零溫度系數(shù)偏置點(diǎn) 文獻(xiàn)證實(shí)了很多的CMOS工藝存在零溫度系數(shù)偏置點(diǎn),由于零溫度系數(shù)偏置點(diǎn)的存在,可以通過在MOS管柵極加一個(gè)不隨溫度變化的偏置電壓,得到相應(yīng)的不受溫度影響的電流基準(zhǔn),如圖1所示。 根據(jù)MOS管平方律公式,NMOS管漏電流為 式中:μn是M0管載流子遷移率;Cox為氧化層電容;VTH0為M0的閾值電壓。在公式(1)中,只有μn和VTH0是和溫度有關(guān)的量。根據(jù)文獻(xiàn),閾值電壓可以表示為 把式(2)、(3)代人式(1),和溫度相關(guān)的電流基準(zhǔn)源IREF可以表示成 可以看出,載流子遷移率的溫度相關(guān)性和閾值電壓的溫度相關(guān)性正好互相補(bǔ)償,抵消了溫度對(duì)它們的作用。在TSMC 0.25 μm標(biāo)準(zhǔn)工藝條件下,寬長(zhǎng)為16 μm和8μm時(shí),MOS管不同溫度下的跨導(dǎo)特性如圖2所示。由圖可知,MOS管在點(diǎn)(VZTC,IZTC)時(shí),它的跨導(dǎo)特性幾乎不受溫度的影響。此時(shí)NMOS管ZTC點(diǎn)相應(yīng)的電流為19.1 μA,電壓為765.3 mV,PMOS管ZTC點(diǎn)的電流為-12.3μA,電壓為-1.13 V。由于PMOS ZTC點(diǎn)的電壓值超過了所能提供的電源電壓,所以本文采用NMOS管來產(chǎn)生基準(zhǔn)電流。 2 低壓溫度補(bǔ)償電壓基準(zhǔn)電路 2.1 帶隙基準(zhǔn)電路結(jié)構(gòu) 基于TSMC 0.25 μm CMOS工藝,采用一級(jí)溫度補(bǔ)償、電流反饋技術(shù)設(shè)計(jì)的低壓帶隙基準(zhǔn)電路如圖3所示,其工作原理與傳統(tǒng)的帶隙基準(zhǔn)電路相似。為了與CMOS標(biāo)準(zhǔn)工藝兼容,采用PNP管的集電極接地結(jié)構(gòu)。低壓鉗位運(yùn)放使a、b兩點(diǎn)的電壓相等。設(shè)置Ma1、Ma2、Ma3管的寬長(zhǎng)比使它們的電流關(guān)系為 Q2和Q1的發(fā)射極面積的比為N,R2=R3,流過Q1和Q2的電流相等,△VBE等于VT?ln(N)。流過電阻R1的電流為 選取合適的電阻比值使電壓基準(zhǔn)不受溫度影響,調(diào)節(jié)m和R4來調(diào)節(jié)基準(zhǔn)電壓的大小,得到合適的值。 2.2 電壓基準(zhǔn)中運(yùn)放的設(shè)計(jì) 運(yùn)算放大器是帶隙電壓基準(zhǔn)源中重要的模塊之一,它主要確保帶隙中兩個(gè)電壓基準(zhǔn)點(diǎn)a與b相等,保證產(chǎn)生PTAT電流。本文采用NMOS輸入差分對(duì)來解決低壓情況下PMOS差分對(duì)沒有足夠的輸入電壓范圍的問題。使用帶R-C補(bǔ)償?shù)膬杉?jí)運(yùn)放,提供較高的增益及穩(wěn)定性。同時(shí)為了運(yùn)放能在1 V的電源電壓下正常工作,運(yùn)放的NMOS輸入差分對(duì)工作在亞閾值區(qū)域,需要比較大的管子尺寸,加上合理的版圖布局,可以使失調(diào)電壓最小化。M4、M5中的偏置電流比M3中尾電流稍大,以保證電流鏡中有足夠的工作電流。 同時(shí)運(yùn)算放大器的直流增益和PSRR都比較大,正負(fù)PSRR分別為-80.07 dB和-90.44dB,對(duì)帶隙基準(zhǔn)電壓的影響可忽略。運(yùn)放的電路如圖4所示。這里用p型的擴(kuò)散層來實(shí)現(xiàn)所有的電阻。 3 電路仿真與結(jié)果分析 電路采用TSMC 0.25 μm標(biāo)準(zhǔn)CMOS工藝,用Spectre對(duì)整個(gè)電路進(jìn)行仿真,在電源電壓為1 V時(shí),低壓工作下電壓基準(zhǔn)提供的基準(zhǔn)電壓為765.4mV,在1~4 V的電源電壓內(nèi)能夠穩(wěn)定輸出,基準(zhǔn)電壓和基準(zhǔn)電流隨電源電壓的關(guān)系如圖5所示。 基準(zhǔn)電壓偏置在NMOS管的零溫度系數(shù)點(diǎn)時(shí),通過NMOS的輸出基準(zhǔn)電流為19.06μA,溫度系數(shù)僅為18.7×10-6,并能在1~2.4 V電源電壓時(shí)穩(wěn)定輸出,在2.4 V以上電源電壓時(shí),隨著電源電壓增加而緩慢增加,這是由于基準(zhǔn)電壓源產(chǎn)生的基準(zhǔn)電壓和VZTC沒有完美吻合所導(dǎo)致的。在-20~120℃內(nèi),VREF與VZTC最大偏差為0.65‰,IREF與IZTC最大偏差2.4‰。電路基準(zhǔn)電壓和基準(zhǔn)電流的溫度特性曲線如圖6所示。電路的整個(gè)功耗為53.5μw。在0.18μm標(biāo)準(zhǔn)工藝下,該電路能在0.8 V超低壓下穩(wěn)定工作。 從仿真結(jié)果看,這個(gè)基準(zhǔn)電流源在低壓條件下,-20~120℃溫度內(nèi)能很好地工作,性能比其他傳統(tǒng)的基準(zhǔn)電流源好。具體的性能比較見表1。 4 結(jié)論 基于零溫度系數(shù)偏置點(diǎn)技術(shù)和溫度補(bǔ)償技術(shù)設(shè)計(jì)了一個(gè)低壓、低功耗的基準(zhǔn)電流源。使用亞閾值工作的超低壓運(yùn)放實(shí)現(xiàn)帶隙電壓基準(zhǔn),對(duì)MOS管進(jìn)行溫度補(bǔ)償,使MOS管工作在ZTC偏置點(diǎn);帶隙基準(zhǔn)的輸出電壓在-20~120℃內(nèi)與ZTC點(diǎn)電壓最大偏差為0.65‰,在765.4 mV的基準(zhǔn)電壓情況下,產(chǎn)生的基準(zhǔn)電流為19.06μA;在-20~120℃的溫度內(nèi),溫度系數(shù)僅為18.7×10-6。因此這個(gè)電路很適合為低壓下工作的數(shù)模、模數(shù)轉(zhuǎn)換器、濾波器、運(yùn)算放大器等提供穩(wěn)定的電流源。 |