国产毛片a精品毛-国产毛片黄片-国产毛片久久国产-国产毛片久久精品-青娱乐极品在线-青娱乐精品

DSP控制SPWM全橋逆變器直流偏磁的研究

發布時間:2015-11-12 10:51    發布者:designapp
關鍵詞: DSP , SPWM , 全橋逆變器
  摘要:提出了一種基于DSP的消除SPWM全橋逆變器直流偏磁問題的控制方案,采用TI公司的DSP芯片TMS320F240來實現。在一臺400Hz6kW樣機上進行了實驗,實驗結果表明該方案能較好地解決全橋逆變器中的直流偏磁問題。
  關鍵詞:全橋逆變器;直流偏磁;正弦波脈寬調制
  1 引言
  近年來,SPWM逆變器已經在許多交流電能調節系統中得到廣泛應用,相對于半橋而言,全橋逆變器的開關電流減小了一半,因而更適合于大功率場合。在SPWM全橋逆變器中,為實現輸入輸出之間的電氣隔離和得到合適的輸出電壓幅值,一般在輸出端接有基頻交流變壓器。而在輸出變壓器中,由于各種原因引起的直流偏磁問題致使鐵心飽和,從而加大了變壓器的損耗,降低了效率,甚至會引起逆變器顛覆,嚴重影響了SPWM全橋逆變器的正常運行,必須采取措施加以解決。
  隨著高頻開關器件的發展,模擬瞬時值反饋控制使SPWM逆變器獲得了優良的動態響應特性和較小的諧波畸變率。但模擬控制存在著分散性大、溫度漂移及器件老化等不利因素,因而給設備調試及維護造成許多困難。數字控制克服了模擬控制的上述缺點,并具有硬件簡單、調試方便、可靠性高的優勢,因而引起了高度的重視。 本文在對SPWM全橋逆變器中輸出變壓器直流偏磁機理分析的基礎上,提出了一種數字PI控制方案,通過采樣輸出變壓器原方電流來調整觸發脈沖寬度。該方案利用DSP芯片TMS320F240在一臺全數字化6kW、400Hz中頻逆變電源上得以實現,實驗結果表明所提出的方案較好地抑制了輸出變壓器的直流偏磁。
  2 直流偏磁
  DSP控制的SPWM全橋逆變器如圖1所示。直流偏磁是指由于輸出變壓器原邊電壓正負波形不對稱,引起變壓器鐵心工作磁滯回線中心點偏離零點,從而造成磁工作狀態不對稱的現象。變壓器工作時,磁感應強度B的變化率為B=dt(1)
  勵磁電流Iμ的變化率為Iμ=dt(2)
  


  圖1DSP控制的SPWM全橋逆變器
  


  圖2無直流偏磁時波形圖
  (a)SPWM波形(b)磁感應強度B
  (a)SPWM波形(b)磁感應強度B
  


  圖3有正直流偏磁時波形圖
  式中:U1——變壓器原邊電壓;
  N1——變壓器原邊繞組匝數;
  Ae——變壓器鐵心截面積;
  Lo——變壓器鐵心磁路長度;
  μ0——空氣磁導率;
  μr——變壓器鐵心相對磁導率。
  如圖2所示,在SPWM全橋逆變器中,若輸出變壓器原邊電壓正負半周波形對稱,正負半波伏秒積相等,鐵心磁工作點將以原點為中心沿著磁滯回線對稱地往復運動。反之,若輸出變壓器原邊電壓正負波形不對稱,正負半波伏秒積不等,則使正負半波磁感應強度幅值不同,磁工作區域將偏向第一或第三象限,即形成直流偏磁如圖3所示。
  造成原邊電壓正負波形不對稱的原因,主要有以下幾個方面:
  1)由于主電路中功率開關管導通時飽和壓降不同,使得加在變壓器原邊的電壓正負波形幅值不等;
  2)由于控制系統中正弦調制波或三角載波存在直流分量;或是由于四路脈沖分配及死區形成電路不對稱;或是由于采用波形校正技術來對脈寬進行動態調節;或是由于主電路中功率開關管關斷時的存儲時間不一致;使得加在變壓器原邊的電壓正負波形脈寬不等; 3)由于SPWM逆變器在短路保護或關機時采用驅動脈沖瞬時封鎖法,工作周期不完整,導致變壓器鐵心的剩磁過高,使得變壓器鐵心的磁工作區域偏離零點。
  由上述分析可知,在SPWM全橋逆變器中必然存在著直流偏磁。如前所述,直流偏磁會導致鐵心飽和,不僅加大了變壓器的損耗,降低了效率,增大了噪聲;而且使兩路功率開關管中的電流不平衡,降低了管子的有效利用率。如果偏磁繼續積累,鐵心進入深度飽和,磁工作點進入非線性區,變壓器鐵心相對導磁率μr將迅速減小。由式(2)可見,這將導致勵磁電流Iμ迅速增大,甚至會引起逆變顛覆,使功率開關管因過流而損壞,嚴重影響了SPWM全橋逆變器的正常運行,因此必須采取措施加以解決。
  為解決SPWM全橋逆變器中存在的直流偏磁問題,一般可采取如下措施:
  1)變壓器鐵心加氣隙,增加鐵心的磁阻,提高變壓器抗直流偏磁的能力;磁通密度按單相工作狀態選取,但這樣卻降低了鐵心的利用率,增大了變壓器的體積和重量。
  2)變壓器原邊繞組串接一個無極性隔直電容,這種方案一般僅適合于小功率逆變電源,而不適合于中大功率逆變電源。這一方面是因為無極性電容耐壓和容量的限制,需要大量的電容進行串并聯,從而大大增加了成本、體積和重量;另一方面是因為主電路中串入隔直電容,降低了功率傳遞效率,影響了逆變器的動態特性。
  3)選擇飽和壓降和存儲時間特性一致的功率開關管用于SPWM全橋逆變器,減小控制電路的脈寬失真和驅動延時。
  4)在動態情況下限制控制信號的最大變化率,使正負半波盡量對稱,但這樣卻降低了逆變器的動態響應速度。
  5)逆變器采用軟啟動和軟關機技術,使變壓器
  控制技術
  


  圖4抗直流偏磁數字PI控制器
  剩磁很小,防止開機時產生瞬態飽和。 此外,一些資料也提出了一些抗直流偏磁的控制方案,如文獻[1]提出的逐脈沖電流檢測法,文獻[2]提出的電流型PWM控制法,文獻[3]提出的采樣保持法,文獻[4]提出的雙環控制法等等,但這些方法均只適用于DC/AC/DC變換器中的逆變器部分。文獻[5]提出的靜態補償和適時補償法較好地解決了SPWM全橋逆變器中存在的直流偏磁問題,但卻屬于模擬控制。本文通過采樣輸出變壓器原邊電流,通過數字PI控制器來調整觸發脈沖寬度,較好地解決了全數字化SPWM逆變電源中存在的直流偏磁問題。
  3數字PI抗直流偏磁
  在SPWM全橋逆變器中,輸出變壓器的原邊電流為折算到原邊的副邊電流與原邊的勵磁電流之和。如上所述,當發生直流偏磁時,在第一或第三象限,變壓器鐵心相對導磁率μr迅速減小,某一方向的勵磁電流Iμ以指數規律迅速增大,導致輸出變壓器原邊電流的直流分量也迅速增大。因此,SPWM全橋逆變器的直流偏磁問題,可歸結為輸出變壓器原邊電流的直流分量的產生和迅速增長的問題。如果能將原邊電流的直流分量迅速檢測出來,并加以控制使之減小,就可以解決直流偏磁問題,使SPWM全橋逆變器正常運行。
  在輸出變壓器中,勵磁電流一般僅占原邊電流的2%,因此原邊電流直流分量的檢測必須首先濾除勵磁電流中的基波及高頻成分,然后再將剩下的直流分量放大后用于控制。勵磁電流中直流分量的提取有硬件提取和軟件提取兩種方法。硬件提取可先經有源濾波,再通過A/D口讀入直流量實現;軟件提取則通過原邊電流瞬時雙極性A/D采樣并通過一定的濾波算法來實現。
  圖4給出了SPWM全橋逆變器抗直流偏磁數字PI控制器的原理框圖。對控制器而言,要求原邊電流直流分量以最小誤差收斂到零,并滿足一定的動態指標。
  數字PI控制器使誤差Ie(K)為一個很小的值,誤差Ie(K)定義為Ie(K)=0-i1dc(K)(3)
  式中:i1dc(K)為所提取的原邊電流直流分量。
  數字PI控制器根據i1dc(K)來產生所要求的控制量u(z)=KpIe(z)+Ie(z)(4)
  采用增量式PI控制算法,其增量表達式為:
  u(K)=u(K-1)+Δu(K)(5)
  Δu(K)=Kp[Ie(K)+Ie(K-1)]+KIIe(K)(6)
  數字PI控制器在過去幾十年里得到了廣泛的應用,其實現簡單直觀、魯棒性好、可靠性高,在一定的運行范圍內可以獲得較為滿意的控制效果。在本文中,采樣輸出變壓器原邊電流用于反饋,通過數字PI控制器得出的控制量可用于對SPWM驅動脈寬進行修正,以減小原邊電流中的直流分量,把變壓器的直流偏磁限制在較小的范圍之內。
  此外,在程序中也采用軟啟動技術,使變壓器剩磁很小,防止開機時產生瞬態飽和。為防止驅動脈沖過窄而丟失造成直流偏磁,對SPWM驅動波形的最小占空比進行了限制。為避免空載-滿載或滿載-空載等動態過程中,勵磁電流急劇增大而燒毀功率開關管,程序中還采用了直流母線電流滯環封鎖技術:當直流母線電流超過滯環上限值時,則封鎖相應驅動脈沖,直到電流減小到滯環下限值時,再開放控制脈沖,從而避免逆變顛覆,有效地保護了開關管。
  4 物理實現和實驗結果
  本文采用德州儀器公司(TI)提供的DSP芯片TMS320F240來實現SPWM全橋逆變器的數字控制。TMS320F240具有許多優良的特性,諸如采用先進的哈佛型結構、50ns指令周期時間、16×16位硬件乘法器、32位算術邏輯單元、544字×16位片內RAM、16k字×16位片內FLASHROM及224k字×16位存儲器地址范圍。為適用于功率變換器領域,TMS320F240還集成了先進的外圍設備,包括含12路PWM通道的事件管理器模塊、雙10位A/D轉換模塊、基于鎖相環的時鐘模塊、看門狗定時器、串行通信
  DSP控制SPWM全橋逆變器直流偏磁的研究
  (a)驅動波形(b)uab波形
  (a)i1波形(b)uo波形
  


  圖5實驗波形
  接口、串行外設接口、6種外部中斷和28個獨立編程多路復用I/O引腳。
  本文介紹的數字PI抗直流偏磁方案已在一臺直流175~320V輸入,交流400Hz、230V、6kW輸出的××艇中頻逆變電源中得到應用。為簡化驅動電路的設計,提高可靠性,主電路采用三菱公司的IPM模塊PM200DSA120。為降低開關損耗,此模塊開關頻率為10kHz。為消除高頻噪聲,減小濾波電路的體積和重量,采用單極倍頻技術使輸出變壓器原邊的SPWM波形的最低次諧波為20kHz。逆變器滿載時的實驗波形圖5所示,其中圖5(a)為S1和S3的驅動波形,圖5(b)為逆變橋臂輸出電壓uab的波形,圖5(c)為逆變器原邊電流i1波形,圖5(d)為逆變器輸出電壓uo的波形。
  5 結語
  在對SPWM全橋逆變器中輸出變壓器直流偏磁機理分析的基礎上,提出了一種數字PI控制方案,通過采樣輸出變壓器原邊電流,并提取其直流分量來調整觸發脈沖寬度。該方案采用DSP芯片TMS320F240,在一臺全數字化6kW、400Hz中頻逆變電源上得以實現,實驗結果表明所提出的方案在很大程度上減小了偏磁所引起的噪聲,較好地解決了輸出變壓器的直流偏磁問題。
                               
               
本文地址:http://m.qingdxww.cn/thread-156181-1-1.html     【打印本頁】

本站部分文章為轉載或網友發布,目的在于傳遞和分享信息,并不代表本網贊同其觀點和對其真實性負責;文章版權歸原作者及原出處所有,如涉及作品內容、版權和其它問題,我們將根據著作權人的要求,第一時間更正或刪除。
您需要登錄后才可以發表評論 登錄 | 立即注冊

廠商推薦

  • Microchip視頻專區
  • 使用SAM-IoT Wx v2開發板演示AWS IoT Core應用程序
  • 使用Harmony3加速TCP/IP應用的開發培訓教程
  • 集成高級模擬外設的PIC18F-Q71家族介紹培訓教程
  • 探索PIC16F13145 MCU系列——快速概覽
  • 貿澤電子(Mouser)專區

相關視頻

關于我們  -  服務條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯系我們
電子工程網 © 版權所有   京ICP備16069177號 | 京公網安備11010502021702
快速回復 返回頂部 返回列表
主站蜘蛛池模板: 在线观看欧美日韩 | 国产又长又粗又爽免费视频 | 精品一区二区久久久久久久网精 | 国产精品日本一区二区在线播放 | 精品免费国产一区二区三区 | 四虎影院观看视频 | 97国产成人精品免费视频 | 老司机精品在线 | 欧美在线一区二区三区欧美 | 四虎在线最新地址4hu | 色狠狠成人综合色 | 99cao| 欧美一级黄色片在线观看 | 一区精品麻豆经典 | 啦啦啦手机在线播放视频 | 国产在线午夜 | 欧美日韩一区二区不卡 | 四虎网址换成什么了2021 | 九九精品视频在线播放 | 特级片免费看 | 黄在线观看网站 | 亚洲aⅴ在线 | 国内在线观看精品免费视频 | 日韩高清一区二区 | 中文字幕日韩高清 | 欧美一区二区三区在线可观看 | 日本一区二区三区有限公司 | 久久99热精品免费观看k影院 | 欧美一区在线播放 | 日本护士69xxxxx高清hd | 国产免费131美女视频 | 亚洲精品资源 | 日韩欧美一区二区三区 | 若妻家庭女教师 | 国产麻豆剧传媒精品好看的片 | 视频在线色 | 亚洲一级毛片免费观看 | 91短视频在线观看免费 | 香蕉色综合 | 欧美亚洲日本国产 | 欧美成人黄色片 |