Hybrid Converter Simplifies 48 V/54 V Step-Down Conversion in Data Centers and Telecom Systems 作者:Ya Liu、Jian Li、San-Hwa Chee 和 Marvin Macairan ADI 公司 數(shù)據(jù)中心和電信電源系統(tǒng)設(shè)計發(fā)生了很大變化。主要應(yīng)用制造商都在用更高效的非隔離式高密度降壓型穩(wěn)壓器取代復(fù)雜且昂貴的隔離式 48 V/54 V 降壓型轉(zhuǎn)換器 (圖 1)。在穩(wěn)壓器的總線轉(zhuǎn)換器中無需隔離,這是因為上游 48 V 或 54 V 輸入已經(jīng)與危險的交流電源進(jìn)行了隔離。 圖 1.傳統(tǒng)的電信板電源系統(tǒng)架構(gòu)帶有隔離式總線轉(zhuǎn)換器。在 48 V 已經(jīng)與交流電源隔離的系統(tǒng)中,無需使用隔離式總線轉(zhuǎn)換器。使用非隔離混合式轉(zhuǎn)換器取代隔離式轉(zhuǎn)換器可顯著簡化設(shè)計、降低成本和電路板空間要求。 對于高輸入/輸出電壓應(yīng)用 (48 V 至 12 V),傳統(tǒng)降壓型轉(zhuǎn)換器所需元件通常尺寸更大,因此并非理想的解決方案。也就是說,降壓型轉(zhuǎn)換器必須在低開關(guān)頻率 (例如,100 kHz 至 200 kHz) 下工作,以便在高輸入/輸出電壓下實現(xiàn)高效率。降壓型轉(zhuǎn)換器的功率密度受到無源元件尺寸的限制,特別是電感尺寸的限制。可以通過增加開關(guān)頻率來減小電感尺寸,但是因開關(guān)切換引起的損耗會降低轉(zhuǎn)換器效率,并會導(dǎo)致不可接受的熱應(yīng)力。 與基于電感的傳統(tǒng)降壓型轉(zhuǎn)換器相比,開關(guān)式電容轉(zhuǎn)換器 (電荷泵) 可顯著提高效率并縮小解決方案尺寸。在電荷泵中,采用飛跨電容代替電感以存儲能量并將其從輸入端傳遞到輸出端。電容的能量密度遠(yuǎn)高于電感,因此與降壓型穩(wěn)壓器相比,可將功率密度提高 10 倍。但是,電荷泵是分?jǐn)?shù)型轉(zhuǎn)換器 (它們不能調(diào)節(jié)輸出電壓) 并且無法擴(kuò)展以適用于高電流應(yīng)用。 基于 LTC7821 的混合式轉(zhuǎn)換器兼具傳統(tǒng)降壓型轉(zhuǎn)換器和電荷泵的優(yōu)點:輸出電壓調(diào)節(jié)、可擴(kuò)展性、高效率和高密度。混合式轉(zhuǎn)換器通過閉環(huán)控制對輸出電壓進(jìn)行調(diào)節(jié),就像降壓型轉(zhuǎn)換器一樣。通過峰值電流模式控制,可以輕松地將混合式轉(zhuǎn)換器擴(kuò)展到更高的電流水平 (例如,從 48 V 至 12 V/25 A 的單相設(shè)計擴(kuò)展到 48 V 至 12 V/100 A 的 4 相設(shè)計)。 混合式轉(zhuǎn)換器中的所有開關(guān)管在穩(wěn)態(tài)工作時都只承受一半的輸入電壓,因此能夠使用低額定電壓的 MOSFET 以實現(xiàn)高效率。混合式轉(zhuǎn)換器因開關(guān)切換引起的損耗低于傳統(tǒng)的降壓型轉(zhuǎn)換器,從而可實現(xiàn)高頻開關(guān)。 在典型的 48 V 至 12 V/25 A 應(yīng)用中,LTC7821 在 500 kHz 開關(guān)頻率時可實現(xiàn)超過 97% 的滿載效率。要使用傳統(tǒng)的降壓型控制器達(dá)到相同的效率,必須以三分之一的頻率運行,因而導(dǎo)致解決方案的尺寸大很多。更高的開關(guān)頻率允許使用更小的電感,從而使瞬態(tài)響應(yīng)更快并且解決方案尺寸更小 (圖 2)。 圖 2.傳統(tǒng)非隔離式降壓型轉(zhuǎn)換器和混合式轉(zhuǎn)換器的尺寸對比(48 V 至 12 V/20 A)。 LTC7821 是一款峰值電流模式的混合式轉(zhuǎn)換器控制器,提供非隔離式高效率、高密度降壓型轉(zhuǎn)換器完整解決方案所需的功能,適合用作數(shù)據(jù)中心和電信系統(tǒng)的中間總線轉(zhuǎn)換器。LTC7821 的主要特性包括: u 寬 VIN 范圍:10 V 至 72 V (80 V 絕對最大值) u 可鎖相的固定頻率:200 kHz 至 1.5 MHz u 集成式四路 5 V N 溝道 MOSFET 驅(qū)動器 u RSENSE 或 DCR 電流檢測 u 可編程 CCM、DCM 或 Burst Mode® 工作 u CLKOUT 引腳用于多相操作 u 短路保護(hù) u EXTVCC 輸入以提高效率 u 單調(diào)性的輸出電壓啟動 u 32 引腳 (5 mm × 5 mm) QFN 封裝 48 V 至 12 V/25 A 混合式轉(zhuǎn)換器具有 640 W/IN3 的功率密度 圖 3 顯示了一個采用 LTC7821、開關(guān)頻率為 400 kHz 的 300 W 混合式轉(zhuǎn)換器。輸入電壓范圍為 40 V 至 60 V,輸出電壓為 12 V,最大負(fù)載為 25 A。飛跨電容 CFLY 和 CMID 均使用 12 個 10 μF (1210 尺寸) 陶瓷電容。因為開關(guān)頻率高且電感在開關(guān)節(jié)點處僅承受一半的 VIN (伏秒值小),所以可以使用相對較小尺寸的 2 μH 電感 (SER2011-202ML,0.75 英寸 × 0.73 英寸)。如圖 4 所示,解決方案的尺寸大約為 1.45 英寸 × 0.77 英寸,功率密度大約為 640 W/in3。 圖 3.采用 LTC7821 的 48 V 至 12 V/25 A 混合式轉(zhuǎn)換器。 圖 4.一個完整的總線轉(zhuǎn)換器使用電路板的正反面進(jìn)行布局,僅需使用電路板正面 2.7 cm2 的面積。 因為背面三個開關(guān)始終只接收到一半的輸入電壓,所以可使用 40 V 額定電壓的 FET。最上面的開關(guān)采用一個 80 V 額定電壓的 FET,因為在啟動期間 CFLY 和 CMID 預(yù)充電開始時 (無開關(guān)),它接收到的是輸入電壓。在穩(wěn)態(tài)操作期間,所有四個開關(guān)都只接收到一半的輸入電壓。因此,與所有開關(guān)都接收到全部輸入電壓的降壓型轉(zhuǎn)換器相比,混合式轉(zhuǎn)換器的開關(guān)損耗要小得多。圖 5 顯示了設(shè)計效率。峰值效率為 97.6%,滿載效率為 97.2%。由于其效率高 (功率損耗低),熱性能非常出色,如圖 6 熱成像圖所示。在 23°C 的環(huán)境溫度和沒有強(qiáng)制風(fēng)冷的情況下,其熱點溫度為 92°C。 圖 5.在 48 V 輸入、12 V 輸出和 400 kHz fSW 下的效率。 LTC7821 采用獨特的 CFLY 和 CMID 預(yù)平衡技術(shù),可防止啟動期間的輸入浪涌電流。在初始上電期間,測量飛跨電容 CFLY 和 CMID 兩端的電壓。如果這些電壓中有任何一個不是 VIN / 2,則允許對 TIMER 電容進(jìn)行充電。當(dāng) TIMER 電容的電壓達(dá)到 0.5 V 時,內(nèi)部電流源開啟以使 CFLY 電壓達(dá)到 VIN / 2。在 CFLY 電壓達(dá)到 VIN / 2 之后,將 CMID 充電至 VIN / 2。在此期間,TRACK/SS 引腳被拉低,所有外部 MOSFET 都被關(guān)斷。如果在 TIMER 電容電壓達(dá)到 1.2 V 之前,CFLY 和 CMID 兩端的電壓已達(dá)到 VIN / 2,則釋放 TRACK/SS,正常軟啟動開始。圖 7 顯示了這一預(yù)平衡周期,圖 8 顯示了在 48 V 輸入、12 V/25 A 輸出時的 VOUT 軟啟動。 圖 6.圖 2 中混合式轉(zhuǎn)換器解決方案的熱成像圖。 圖 7.LTC7821 啟動時的預(yù)平衡周期避免了高浪涌電流。 圖 8.48 V 輸入、12 V/25 A 輸出時 LTC7821 啟動 (無高浪涌電流)。 圖 9.2 相設(shè)計的 LTC7821 關(guān)鍵信號連接。 1.2 kW 多相混合式轉(zhuǎn)換器 LTC7821 易于擴(kuò)展,因此非常適合高電流應(yīng)用,例如電信和數(shù)據(jù)中心的應(yīng)用。圖 9 顯示了使用多個 LTC7821 的 2 相混合式轉(zhuǎn)換器的關(guān)鍵信號連接。將一個 LTC7821 的 PLLIN 引腳和另一個 LTC7821 的 CLKOUT 引腳連接在一起,使 PWM 信號同步。 對于兩相以上設(shè)計,將 PLLIN 引腳和 CLKOUT 引腳以菊花鏈方式連接。由于 CLKOUT 引腳上的時鐘輸出與 LTC7821 的主時鐘呈 180°反相,所以偶數(shù)相位之間彼此同相,而奇數(shù)相位與偶數(shù)相位之間彼此反相。 圖 10 顯示了一個 4 相 1.2 kW 混合式轉(zhuǎn)換器。每相功率級與圖 3 中的單相設(shè)計相同。輸入電壓范圍為 40 V 至 60 V,輸出為 12 V,最大負(fù)載為 100 A。其峰值效率為 97.5%,滿載效率為 97.1%,如圖 11 所示。其熱性能如圖 12 所示。在 23°C 的環(huán)境溫度和 200 LFM 強(qiáng)制風(fēng)冷的情況下,其熱點為 81°C。該設(shè)計采用了電感 DCR 檢測。如圖 13 所示,4 個相位間的均流非常平衡。 圖 10.采用四個 LTC7821 的 4 相 1.2 kW 混合式轉(zhuǎn)換器。 圖 11.4 相 1.2 kW 設(shè)計的效率。 圖 12.圖 9 所示多相轉(zhuǎn)換器的熱成像圖。 圖 13.圖 9 所示多相轉(zhuǎn)換器的均流。 結(jié)論 LTC7821 是一款峰值電流模式的混合式轉(zhuǎn)換器控制器,能夠以創(chuàng)新的方式實現(xiàn)數(shù)據(jù)中心和電信系統(tǒng)的中間總線轉(zhuǎn)換器簡化解決方案。混合式轉(zhuǎn)換器中的所有開關(guān)都只會接收到一半輸入電壓,從而顯著降低了高輸入/輸出電壓應(yīng)用中的開關(guān)相關(guān)損耗。因此,混合式轉(zhuǎn)換器支持的開關(guān)頻率可高出降壓型轉(zhuǎn)換器 2 至 3 倍,且不影響效率。混合式轉(zhuǎn)換器可輕松擴(kuò)展,以支持更高電流應(yīng)用。較低的整體成本和易擴(kuò)展性使混合式轉(zhuǎn)換器比傳統(tǒng)的隔離式總線轉(zhuǎn)換器更勝一籌。 作者簡介 Ya Liu 是 ADI 公司電源產(chǎn)品應(yīng)用部門的一名高級應(yīng)用工程師,工作地點位于美國加利福尼亞州米爾皮塔斯。目前,他主要為開關(guān)電容轉(zhuǎn)換器和混合轉(zhuǎn)換器提供應(yīng)用支持。他還為眾多 PSM 控制器和模擬降壓型控制器提供支持。Ya 擁有浙江大學(xué) (位于中國杭州) 電氣工程學(xué)士學(xué)位以及弗吉尼亞理工學(xué)院暨州立大學(xué) (簡稱弗吉尼亞理工大學(xué),位于布萊克斯堡) 電氣工程碩士學(xué)位。他擁有 2 項中國專利和 3 項美國專利。聯(lián)系方式:ya.liu@analog.com。 Jian Li 于 2004 年獲得中國清華大學(xué)控制理論與控制工程碩士學(xué)位,并于 2009 年獲得美國弗吉尼亞理工大學(xué)電力電子學(xué)博士學(xué)位。目前,他是 ADI 公司電源產(chǎn)品應(yīng)用工程經(jīng)理。他擁有 9 項美國專利,并發(fā)表了 20 多篇學(xué)報和會議論文。聯(lián)系方式:jian.li@analog.com。 San-Hwa Chee 是電源產(chǎn)品部門的一名設(shè)計專家。多年來,他在凌力爾特公司 (現(xiàn)為 ADI 公司的一部分) 設(shè)計推出了眾多產(chǎn)品。San-Hwa 在其職業(yè)生涯中獲得多項專利。聯(lián)系方式:san-hwa.chee@analog.com。 Marvin Macairan 目前是 ADI 公司 Power by Linear™ 應(yīng)用部門的助理應(yīng)用工程師。他負(fù)責(zé)為應(yīng)用工程師提供支持并優(yōu)化突出 ADI 電源產(chǎn)品的演示板。他擁有位于圣路易斯奧比斯波的加州州立理工大學(xué)電氣工程碩士學(xué)位。聯(lián)系方式:marvin.macairan@analog.com。 |