超聲技術(shù)在工業(yè)中的應(yīng)用開(kāi)始于20世紀(jì)初,隨著超聲技術(shù)的成熟,其應(yīng)用越來(lái)越廣泛。在控制方式上,傳統(tǒng)的感應(yīng)加熱電源控制采用模擬技術(shù)控制,存在元件易老化、工作點(diǎn)漂移和一致性差等原因引起的產(chǎn)品升級(jí)換代困難等缺點(diǎn)。隨著數(shù)字集成芯片、單片機(jī)、DSP、FPGA的出現(xiàn),使感應(yīng)加熱電源數(shù)字化成為一種趨勢(shì),具有控制靈活,系統(tǒng)升級(jí)方便,只要修改相應(yīng)的控制算法,而不必對(duì)硬件電路加以很大的改動(dòng)等優(yōu)點(diǎn)。 隨著電力電子器件的發(fā)展,電路控制技術(shù)也在飛速發(fā)展。控制電路最初以相位控制為手段、由分立元件組成,發(fā)展到集成控制器,再到計(jì)算機(jī)控制,向著高頻率、低損耗和數(shù)字化的方向發(fā)展。超聲波發(fā)生器應(yīng)用數(shù)字化控制技術(shù)一般有3種形式:采用MCU控制、采用DSP控制、采用FPGA控制。相比較而言,DSP適合取樣速率低和軟件復(fù)雜程度高的場(chǎng)合;而當(dāng)系統(tǒng)取樣速率高(MHz級(jí)),數(shù)據(jù)率高(20 MB/s以上),條件操作少,任務(wù)較固定時(shí),采用FPGA更有優(yōu)勢(shì)。 本文利用高速TMS320LF2407A型DSP控制芯片設(shè)計(jì)了系統(tǒng)的控制電路,采用全橋逆變器作為超聲振動(dòng)系統(tǒng)的功率轉(zhuǎn)換主電路,解決由于負(fù)載溫度變化等原因產(chǎn)生諧振頻率的漂移,保證系統(tǒng)的高效率。這里研究了粗精復(fù)合的頻率跟蹤方案,采用掃頻方法實(shí)現(xiàn)頻率粗跟蹤,采用硬件鎖相環(huán)實(shí)現(xiàn)精跟蹤。這兩種方法的結(jié)合既保證在較寬的頻率變化范圍內(nèi)實(shí)現(xiàn)頻率自動(dòng)跟蹤,又保證跟蹤的快速、準(zhǔn)確。為適應(yīng)負(fù)載變化的要求,采用軟開(kāi)關(guān)的PS-PWM控制方法,使系統(tǒng)的輸出功率連續(xù)可調(diào)。 1 主電路拓?fù)浞治?/strong> 超聲電源的主電路采用全橋逆變拓?fù)浣Y(jié)構(gòu),如圖1所示。其中:Z1~Z4為功率主開(kāi)關(guān)管;D1~D4為Z1~Z4內(nèi)部反并聯(lián)寄生二極管;C1~C4為外接并聯(lián)電容或者功率管的寄生電容;T為高頻脈沖變壓器;L0為串聯(lián)調(diào)諧匹配電感;PZT為超聲換能器。 逆變器部分利用功率管寄生電容和并聯(lián)電容,以及變壓器的漏感實(shí)現(xiàn)軟開(kāi)關(guān)零電壓移相控制(ZVS-PSP-WM)的方式。零電壓開(kāi)關(guān)是依靠功率開(kāi)關(guān)管反并聯(lián)二極管的導(dǎo)通實(shí)現(xiàn)功率器件零電壓開(kāi)通;通過(guò)功率諧振電容的充電過(guò)程來(lái)實(shí)現(xiàn)功率器件的零電壓關(guān)斷。 在一個(gè)開(kāi)關(guān)周期內(nèi),移相控制有12種開(kāi)關(guān)模塊,在分析之前,做出如下假設(shè): (1)電路中所有的開(kāi)關(guān)器件Z1~Z4和與其反并聯(lián)二極管D1~D4均為理想開(kāi)關(guān)器件; (2)所有的電感、電容為理想元件且不考慮線路的雜散電感值; (3)不考慮死區(qū)加入對(duì)逆變器工作的影響; (4)逆變器的輸入電壓為恒定電壓源。 移相控制逆變器的4個(gè)開(kāi)關(guān)管驅(qū)動(dòng)波形如圖2所示。逆變器每個(gè)橋臂的2個(gè)功率管成180°互補(bǔ)導(dǎo)通,2個(gè)橋臂的導(dǎo)通角相差1個(gè)相位,即移相角。Z1,Z2為定相臂,Z3,Z4為移相臂。其中Z1和Z2分別先于Z3和Z4導(dǎo)通,移相角為φ,調(diào)節(jié)φ大小即可改變逆變器的輸出電壓,從而調(diào)節(jié)輸出的正弦波電流幅值,使得輸出功率可以調(diào)節(jié)。 逆變器的工作過(guò)程中,功率開(kāi)關(guān)管的導(dǎo)通和關(guān)斷時(shí)間恒定。同一橋臂的兩個(gè)開(kāi)關(guān)管導(dǎo)通和關(guān)斷,需要一定的延時(shí)時(shí)間,防止上下橋臂直通,保證開(kāi)關(guān)管的安全。 2 控制策略 下面對(duì)主電路控制策略的工作過(guò)程進(jìn)行作進(jìn)一步分析,逆變器在工作過(guò)程中,功率開(kāi)關(guān)管的導(dǎo)通和關(guān)斷時(shí)間恒定。導(dǎo)通順序?yàn)閆1→Z4→ Z2→Z3,同一橋臂2個(gè)開(kāi)關(guān)管的導(dǎo)通和關(guān)斷,需要一定延時(shí)時(shí)間,防止上下橋臂直通,保證開(kāi)關(guān)管的安全。 PS-PWM功率控制的逆變電路在1個(gè)周期內(nèi)的主要有以下幾種工作模態(tài),如圖3所示。 (1)工作模式1[t0時(shí)刻](見(jiàn)圖3(a)):在t0時(shí)刻,Z1和Z4同時(shí)導(dǎo)通,電流i的流向:Z1→R→L→C→Z4。 (2)工作模式2[t0,t1](見(jiàn)圖3(b)):在t0時(shí)刻關(guān)斷Z1,電流i給C1充電,C3的電荷被抽走。C1的電壓從零開(kāi)始線性上升,C3的電壓從E開(kāi)始線性下降,Z1是ZVS關(guān)斷。 (3)工作模式3[t,t2](見(jiàn)圖3(c)):t1時(shí)刻,C3的電壓下降到零,D3自然開(kāi)通,將Z3箝位在零,此時(shí)開(kāi)通Z3,Z3是ZVS開(kāi)通,此時(shí)Z3中沒(méi)有電流流過(guò)。 (4)工作模式4[t,t3](見(jiàn)圖3(d)):在t2時(shí)刻關(guān)斷Z4,電流i抽走C2的電荷,同時(shí)給C4充電。Z4的電壓從零開(kāi)始上升,Z4是ZVS關(guān)斷。t3時(shí)刻,C4上的電壓上升到E,即C2上電荷量為零時(shí),D2自然導(dǎo)通。 (5)工作模式5[t3,t4](見(jiàn)圖3(e)):t3時(shí)刻,D2導(dǎo)通,將Z2箝位在零,此時(shí)Z2開(kāi)通,因此Z2是ZVS開(kāi)通。雖然Z2開(kāi)通,但沒(méi)有電流流過(guò)。t4時(shí)刻,D2,D3自然關(guān)斷,Z2和Z3中將流過(guò)電流。 (6)工作模式6[t4,t5](見(jiàn)圖3(f)):在t4時(shí)刻,電流由正方向過(guò)零,并向負(fù)方向增加,電流i的流向:Z2→C→L→R→Z3。到t5時(shí)刻,Z3關(guān)斷,逆變器開(kāi)始另一半周期的工作,工作情況類(lèi)似上述半個(gè)周期。 3 軟件設(shè)計(jì) 在此結(jié)合高性能DSP數(shù)字芯片設(shè)計(jì)了一種新穎的超聲波電源控制系統(tǒng),其整個(gè)系統(tǒng)硬件設(shè)計(jì)框圖如圖4所示。DSP采用TMS320LF2407A,外擴(kuò)FLASH采用CY7C1021V33-122芯片,PWM為脈沖輸出,分別由PWMl,PWM2,PWM3,PWM4引出,并經(jīng)過(guò)集成驅(qū)動(dòng)隔離送至IGBT,控制其導(dǎo)通與關(guān)閉。Iset為給定電路,Io,Id,Udt分別為負(fù)載電流、逆變器的直流輸入電流和電壓,將這3路信號(hào)分別送至各自的調(diào)理電路,經(jīng)過(guò)調(diào)理送入DSP的A/D接口。如遇到外部故障,如過(guò)熱等,向DSP發(fā)出中斷請(qǐng)求,實(shí)施保護(hù)。 在此采用TMS320LF2407A來(lái)實(shí)現(xiàn)PS-PWM算法,利用其EV產(chǎn)生PWM控制信號(hào)。功率控制程序的作用是通過(guò)將從負(fù)載處檢測(cè)到的電流值與功率設(shè)定量相比較,其差值通過(guò)數(shù)字PI控制算法進(jìn)行處理,進(jìn)而得到所需要調(diào)整的移相角度θ值,結(jié)果返回主程序影響比較單元1(CMPRl)的設(shè)定值。PS-PWM功率控制算法如圖5所示。 為了保證超聲電源正常工作,除設(shè)計(jì)各種故障的硬件保護(hù)電路,同時(shí)采用軟件保護(hù)。保護(hù)由硬件、軟件共同實(shí)現(xiàn),保證系統(tǒng)可靠運(yùn)行。軟件保護(hù)是通過(guò)對(duì)檢測(cè)出的信號(hào)進(jìn)行濾波采樣后與DSP中斷級(jí)別最高的XINT2相連接,當(dāng)故障發(fā)生時(shí),進(jìn)入軟件中斷程序,封鎖所有PWM脈沖輸出,實(shí)現(xiàn)保護(hù)效果。中斷保護(hù)程序流程如圖6所示。 4 仿真及實(shí)驗(yàn)結(jié)果 基于以上理論分析及系統(tǒng)的硬件與軟件設(shè)計(jì),用PSpice軟件對(duì)移相功率控制超聲電源進(jìn)行仿真。如圖7、圖8所示。 選取的超聲換能器型號(hào)是DH-6160F-15S-3,其諧振頻率為25 kHz,諧振阻抗為15Ω,靜態(tài)電容為27000 pF,通過(guò)計(jì)算,其匹配電感為O.75 mH。圖7、圖8分別給出移相角分別為φ=0°,φ=45°時(shí)的輸出電壓u和輸出電流i仿真波形。由仿真波形比較分析,當(dāng)移相角φ逐漸增大,其輸出電壓脈寬逐漸減小,電流幅度逐漸減小,可見(jiàn)調(diào)節(jié)φ的大小即可以實(shí)現(xiàn)輸出功率的調(diào)節(jié)。另外,功率管工作在ZVS軟開(kāi)關(guān)狀態(tài),降低了開(kāi)關(guān)損耗和電壓電流應(yīng)力,逆變器始終工作在負(fù)載諧振狀態(tài),負(fù)載側(cè)的功率因數(shù)高,控制簡(jiǎn)單,提高電源的可靠性。根據(jù)前面的設(shè)計(jì),對(duì)3 kw/30 kHz的超聲波發(fā)生器進(jìn)行實(shí)驗(yàn),下面給出逆變橋的驅(qū)動(dòng)波形,PS-PWM控制輸出波形,頻率跟蹤實(shí)驗(yàn)波形。圖9為θ=60°時(shí)Z1和Z4的驅(qū)動(dòng)波形,圖10為θ=60°時(shí)輸出電壓和電流波形;圖11為頻率跟蹤后穩(wěn)態(tài)的輸出電壓和電流波形。 5 結(jié)語(yǔ) 由于傳統(tǒng)開(kāi)關(guān)管觸發(fā)電路是由硬件實(shí)現(xiàn)脈沖移相控制的,其線路復(fù)雜,元件易老化,輸出波形易發(fā)生不同程度的失真,使觸發(fā)脈沖對(duì)稱(chēng)度受到很大影響。由微處理器構(gòu)成的控制系統(tǒng),能在滿足精確性的前提下,實(shí)時(shí)、準(zhǔn)確地完成控制任務(wù),利用軟件實(shí)現(xiàn)移相控制,可以大大改善觸發(fā)脈沖的對(duì)稱(chēng)度,提高信號(hào)精度。在此采用DSP來(lái)實(shí)現(xiàn)功率的PS-PWM控制,通過(guò)改變移相角來(lái)實(shí)現(xiàn)較寬范圍內(nèi)的功率調(diào)節(jié),且功率開(kāi)關(guān)器件工作在軟開(kāi)關(guān)狀態(tài),使得系統(tǒng)效率極大地提高,更具靈活性,運(yùn)行更加可靠。 |