在“電源設計小貼士 3”中,我們討論了輸入濾波器的源極阻抗如何變得具有電阻性,以及其如何同開關調節(jié)器的負輸入阻抗相互作用。在極端情況下,這些阻抗振幅可以相等,但是其符號相反從而構成了一個振蕩器。業(yè)界通用的標準是輸入濾波器的源極阻抗應至少比開關調節(jié)器的輸入阻抗低 6dB,作為最小化振蕩概率的安全裕度。 輸入濾波器設計通常以根據(jù)紋波電流額定值或保持要求選擇輸入電容(圖 1 所示 CO)開始的。第二步通常包括根據(jù)系統(tǒng)的 EMI 要求選擇電感 (LO)。正如我們上個月討論的那樣,在諧振附近,這兩個組件的源極阻抗會非常高,從而導致系統(tǒng)不穩(wěn)定。圖 1 描述了一種控制這種阻抗的方法,其將串聯(lián)電阻 (RD) 和電容 (CD) 與輸入濾波器并聯(lián)放置。利用一個跨接 CO 的電阻,可以阻尼濾波器。但是,在大多數(shù)情況下,這樣做會導致功率損耗過高。 另一種方法是在濾波器電感的兩端添加一個串聯(lián)連接的電感和電阻。 圖 1 CD 和 RD 阻尼輸出濾波器源極阻抗 選擇阻尼電阻 有趣的是,一旦選擇了四個其他電路組件,那么就會有一個阻尼電阻的最佳選擇。圖 2 顯示的是不同阻尼電阻情況下這類濾波器的輸出阻抗。紅色曲線表示過大的阻尼電阻。請思考一下極端的情況,如果阻尼電阻器開啟,那么峰值可能會非常的高,且僅由 CO 和 LO 來設定。藍色曲線表示阻尼電阻過低。如果電阻被短路,則諧振可由兩個電容和電感的并聯(lián)組合共同設置。綠色曲線代表最佳阻尼值。利用一些包含閉型解的計算方法(見參考文獻 1)就可以很輕松地得到該值。 圖 2 在給定 CD-CO 比的情況下,有一個最佳阻尼電阻 選擇組件 在選擇阻尼組件時,圖 3 非常有用。該圖是通過使用 RD Middlebrook 建立的閉型解得到的。橫坐標為阻尼濾波器輸出阻抗與未阻尼濾波器典型阻抗 (ZO = (LO/CO)1/2) 的比。縱坐標值有兩個:阻尼電容與濾波器電容 (N) 的比;以及阻尼電阻同該典型阻抗的比。利用該圖,首先根據(jù)電路要求來選擇 LO 和 CO,從而得到 ZO。隨后,將最小電源輸入阻抗除以二,得到您的最大輸入濾波器源極阻抗 (6dB)。 最小電源輸入阻抗等于 Vinmin2/Pmax。只需讀取阻尼電容與濾波器電容的比以及阻尼電阻與典型阻抗的比, 您便可以計算得到一個橫坐標值。例如,一個具有 10μH 電感和 10μH 電容的濾波器具有 Zo = (10μH/10 μF)1/2 = 1 Ohm 的典型阻抗。如果它正對一個 12V 最小輸入的 12W 電源進行濾波,那么該電源輸入阻抗將為 Z = V2/P = 122/12 = 12 Ohms。這樣,最大源極阻抗應等于該值的二分之一,也即 6 Ohms。現(xiàn)在,在 6/1 = 6 的 X 軸上輸入該圖,那么,CD/CO = 0.1,即 1 μF,同時 RD/ZO = 3,也即 3 Ohms。 圖 3 選取 LO 和 CO 后,便可從最大允許源極阻抗范圍內(nèi)選擇 CD 和 RD。 在“電源設計小貼士 5”中,我們將討論降壓—升壓電源中降壓控制器的使用。 |