使用有源器件(例如MOSFET)的線性區域進行功率控制并不是有效的解決方案。但如果功率控制被限制在控制范圍的低位或高位部分,那么使用線性區域卻是個不錯的選擇。例如,如果我們希望將45W電烙鐵的功率控制在35W至45W之間,則一個有源器件將消耗約0.1W~4W的電量。圖1中所顯示的電路正是基于這一點開發出來的。 圖1:基于有源器件的線性區域進行功率控制。 在這個電路當中,VOM1271光電耦合器是通過簡單的電流源來驅動的。VOM1271的最大輸出電壓可達到8.4V。圖2顯示了輸入正向電流(IF)與輸出短路電流(ISC)之間本質上的線性關系。在光電輸出未達到開路電壓(8V)時,其行為與恒流源相似。該輸出電壓可用于驅動閾值電壓(VTH)低于8V的MOSFET。 F)與輸出短路電流(ISC)之間的線性關系。"> 圖2:輸入正向電流(IF)與輸出短路電流(ISC)之間的線性關系。 對于線性模式下的MOSFET而言,其中的一個難題就是,即使是相同批次的器件,它們的柵源閾值電壓也會各不相同。在柵源電壓(VGS)超過閾值之后,漏極電流迅速增加,但VGS的變化卻不大(參考文獻1)。被應用到Q3和Q4柵極的輸出電壓(即VGS)根據Q3和Q4的跨導特性而改變,而光電耦合器輸出端上的MOSFET Q2正是通過這種方式被偏置。 轉到下一頁 圖3顯示了VOM1271正向電流(IF)與柵源電壓之間的關系。在僅有少量正向電流的情況下,柵源電壓在增加到膝點電壓的過程中斜率為m1。因為R5+R6+R7>>R4,所以該斜率幾乎與(1/(R5+R6+R7))成正比。可以調整R7的值,從而使膝點電壓與Q3和Q4的閾值電壓(約為4V到5V之間)相匹配。超過膝點之后,隨著正向電流的增加,柵源電壓的變化速度變慢且此時的斜率m2也更高,這與MOSFET柵源電壓與ID的曲線類似。斜率m2通過微調R4(m2∝1/R4)來控制。 F)與柵源電壓之間的關系。"> 圖3:VOM1271正向電流(IF)與柵源電壓之間的關系。 如圖1所示,Q3與Q4相連接以引導交流電。45W的電烙鐵作為負載由電路進行控制。因為Q3和Q4的閾值電壓可能會有所不同,所以要利用電阻值為1Ω的兩個電阻(即R8和R9)來抵消它們之間的部分電壓差。因為Q3和Q4獲得的是相同的柵極電壓,負載電流較高時會導致電壓降過大,而這往往也會使ID降低。在設定R8和R9的值時應考慮交流負載:交流負載越大,它們的值應越低。 圖4顯示了在不同的功率等級下負載兩端的電壓波形圖。由于閾值電壓存在差異,可以看見正負兩半部分之間有微小的不平衡,尤其在低功耗的情況下更是如此。這些波形就像是頂部被削平的正弦波波形。然而,與常見的雙向晶閘管(TRIAC)控制的波形相比,這種波形失真生成射頻干擾(RFI)的可能性較小。 圖4:不同功率等級下負載兩端的電壓波形圖。 盡管本設計實例中是用恒流源實現電源控制,但也可以用任何其它的控制源來替代。光學隔離可以在交流電情況下保證控制源的安全。盡管本例中的電路是用于交流電功率控制,但它也可以用于直流電功率控制。 參考文獻 [1] Electronics-Circuits and Systems, Owen Bishop, Elsevier, 2011, pg. 63. |