国产毛片a精品毛-国产毛片黄片-国产毛片久久国产-国产毛片久久精品-青娱乐极品在线-青娱乐精品

AI普及給嵌入式設(shè)計人員帶來新挑戰(zhàn)

發(fā)布時間:2024-8-22 19:51    發(fā)布者:eechina
Microchip Technology Inc.
觸摸和手勢業(yè)務(wù)部
副總監(jiān)
Yann LeFaou

探討了人工智能(AI)的普及給嵌入式設(shè)計人員帶來的新挑戰(zhàn)。在創(chuàng)建“邊緣機(jī)器學(xué)習(xí)(ML)”應(yīng)用時,設(shè)計人員必須確保其能有效運行,同時最大限度地降低處理器和存儲開銷,以及物聯(lián)網(wǎng)(IoT)設(shè)備的功耗。

從監(jiān)控和訪問控制到智能工廠和預(yù)測性維護(hù),基于機(jī)器學(xué)習(xí)(ML)模型構(gòu)建的人工智能(AI)在工業(yè)物聯(lián)網(wǎng)邊緣處理應(yīng)用中已變得無處不在。隨著這種普及,支持AI的解決方案的構(gòu)建已經(jīng)變得“大眾化”——從數(shù)據(jù)科學(xué)家的專業(yè)領(lǐng)域轉(zhuǎn)為嵌入式系統(tǒng)設(shè)計人員也需要了解的領(lǐng)域。這種大眾化帶來的挑戰(zhàn)在于,設(shè)計人員并不一定具備定義要解決的問題以及以最恰當(dāng)方式捕獲和組織數(shù)據(jù)的能力。此外,與消費類解決方案不同,工業(yè)AI實現(xiàn)的現(xiàn)有數(shù)據(jù)集很少,通常需要用戶從頭開始創(chuàng)建自己的數(shù)據(jù)集。

融入主流

AI已經(jīng)融入主流,深度學(xué)習(xí)和機(jī)器學(xué)習(xí)(DL和ML)是我們現(xiàn)在習(xí)以為常的許多應(yīng)用的背后力量,這些應(yīng)用包括自然語言處理、計算機(jī)視覺、預(yù)測性維護(hù)和數(shù)據(jù)挖掘。早期的AI實現(xiàn)是基于云或服務(wù)器的,需要大量的處理能力和存儲空間,以及AI/ML應(yīng)用與邊緣(終端)之間的高帶寬連接。盡管生成式AI應(yīng)用(如ChatGPT、DALL-E和Bard)仍然需要此類設(shè)置,但近年來已經(jīng)出現(xiàn)了邊緣處理的AI,即在數(shù)據(jù)捕獲點實時處理數(shù)據(jù)。邊緣處理極大減少了對云的依賴,使整體系統(tǒng)/應(yīng)用更快、需要更少的功耗并且成本更低。許多人認(rèn)為安全性得到了提高,但更準(zhǔn)確地說,主要的安全重點從保護(hù)云與終端之間的通信轉(zhuǎn)移到了使邊緣設(shè)備更安全。

邊緣的AI/ML可以在傳統(tǒng)的嵌入式系統(tǒng)上實現(xiàn),這些系統(tǒng)的設(shè)計人員可以使用強(qiáng)大的微處理器、圖形處理單元和豐富的存儲器器件,即類似于PC的資源。然而,越來越多的商業(yè)和工業(yè)物聯(lián)網(wǎng)設(shè)備需要在邊緣具備AI/ML功能,這些設(shè)備通常硬件資源有限,而且在許多情況下由電池供電。

在資源和功耗受限的硬件上運行的邊緣AI/ML的潛力催生了“TinyML”這一術(shù)語。實際用例涵蓋工業(yè)(如預(yù)測性維護(hù))、樓宇自動化(環(huán)境監(jiān)控)、建筑施工(監(jiān)督人員安全)和安防等領(lǐng)域。

數(shù)據(jù)流

AI(及其子集ML)需要從數(shù)據(jù)捕獲/收集到模型部署的工作流程(見圖1)。對于TinyML而言,由于嵌入式系統(tǒng)資源有限,因此每個工作流程階段的優(yōu)化至關(guān)重要。

例如,TinyML的資源需求被認(rèn)為是1 MHz到400 MHz的處理速度、2 KB到512 KB的RAM和32 KB到2 MB的存儲空間(閃存)。此外,150 μW至23.5 mW的小功耗預(yù)算也常常帶來挑戰(zhàn)。


圖1——上圖為簡化的AI工作流程。雖然圖中未顯示,但模型部署本身必須將數(shù)據(jù)反饋回流程中,甚至可能影響數(shù)據(jù)的收集。

此外,在將AI嵌入資源有限的嵌入式系統(tǒng)時,還有更重要的考慮因素或權(quán)衡。模型是系統(tǒng)行為的關(guān)鍵,但設(shè)計人員經(jīng)常發(fā)現(xiàn)自己在模型質(zhì)量/精度(影響系統(tǒng)可靠性/依賴性和性能,主要是運行速度和功耗)之間做出妥協(xié)。

另一個關(guān)鍵因素是決定使用哪種類型的AI/ML。通常有三種算法可供使用:監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)。

解決方案

即使是對AI和ML有良好理解的設(shè)計人員,可能也會在優(yōu)化AI/ML工作流程的每個階段并在模型精度與系統(tǒng)性能之間找到完美平衡方面遇到困難——那么缺乏以往經(jīng)驗的嵌入式設(shè)計人員如何應(yīng)對這些挑戰(zhàn)呢?

首先,重要的是不要忽視一個事實:如果模型小且AI任務(wù)僅限于解決簡單問題,那么部署在資源有限的物聯(lián)網(wǎng)設(shè)備上的模型將會更有效。

幸運的是,ML(特別是TinyML)進(jìn)入嵌入式系統(tǒng)領(lǐng)域,帶來了新的(或增強(qiáng)的)集成開發(fā)環(huán)境(IDE)、軟件工具、架構(gòu)和模型——其中許多都是開源的。例如,TensorFlow™ Lite for Microcontrollers(TF Lite Micro)是一個面向ML和AI的免費開源軟件庫,它專為在只有幾KB存儲器的器件上實現(xiàn)ML而設(shè)計。此外,程序可以用開源和免費的Python語言編寫。

關(guān)于IDE,Microchip的MPLAB® X就是此類環(huán)境的一個示例。該IDE可與公司的MPLAB ML一起使用,MPLAB ML是專門開發(fā)的MPLAB X插件,用于構(gòu)建優(yōu)化的AI物聯(lián)網(wǎng)傳感器識別代碼。MPLAB ML由AutoML提供支持,可將AI ML工作流程的每一步完全自動化,無需重復(fù)、繁瑣和耗時的模型構(gòu)建。特征提取、訓(xùn)練、驗證和測試確保滿足單片機(jī)和微處理器存儲器限制的優(yōu)化模型,使開發(fā)人員能夠快速在基于Microchip Arm® Cortex®的32位MCU或MPU上創(chuàng)建和部署ML解決方案。

流程優(yōu)化

工作流程優(yōu)化任務(wù)可以通過使用現(xiàn)成的數(shù)據(jù)集和模型來簡化。例如,如果一個支持ML的物聯(lián)網(wǎng)設(shè)備需要圖像識別,從現(xiàn)有的標(biāo)記靜態(tài)圖像和視頻片段數(shù)據(jù)集開始進(jìn)行模型訓(xùn)練(測試和評估)是合理的;需要注意的是,監(jiān)督學(xué)習(xí)算法需要標(biāo)記數(shù)據(jù)。

許多圖像數(shù)據(jù)集已經(jīng)存在于計算機(jī)視覺應(yīng)用中。然而,由于它們是為基于PC、服務(wù)器或云的應(yīng)用設(shè)計的,通常都很大。例如,ImageNet包含超過1400萬張標(biāo)注圖像。

根據(jù)ML應(yīng)用的不同,可能只需要少量子集;例如,有很多人但只有少量靜物的圖像。例如,如果在建筑工地使用支持ML的攝像頭,當(dāng)有不戴安全帽的人進(jìn)入其視野時,它們可以立即發(fā)出報警。ML模型需要訓(xùn)練,但可能只需要少量戴或不戴安全帽的人的圖像。然而,對于帽子類型,可能需要更大的數(shù)據(jù)集和足夠的數(shù)據(jù)集范圍,以考慮不同的光照條件等各種因素。

圖1中第1步到第3步的內(nèi)容分別是獲得正確的實時(數(shù)據(jù))輸入和數(shù)據(jù)集、準(zhǔn)備數(shù)據(jù)和訓(xùn)練模型。模型優(yōu)化(第4步)通常是壓縮,這有助于減少存儲器需求(處理期間的RAM和用于存儲的NVM)和處理延遲。

在處理方面,許多AI算法(如卷積神經(jīng)網(wǎng)絡(luò)(CNN))在處理復(fù)雜模型時會遇到困難。一種流行的壓縮技術(shù)是剪枝(見圖2),剪枝有四種類型:權(quán)重剪枝、單元/神經(jīng)元剪枝和迭代剪枝。


圖2——剪枝減少了神經(jīng)網(wǎng)絡(luò)的密度。上圖中,某些神經(jīng)元之間的連接權(quán)重被設(shè)為零。但有時神經(jīng)元也可以被剪掉(圖中未顯示)。

量化是另一種流行的壓縮技術(shù)。量化是將高精度格式(如32位浮點(FP32))的數(shù)據(jù)轉(zhuǎn)換為低精度格式(如8位整數(shù)(INT8))的過程。量化模型(見圖3)的使用可以通過以下兩種方式之一納入機(jī)器訓(xùn)練。

•        訓(xùn)練后量化涉及使用FP32格式的模型,當(dāng)訓(xùn)練完成后,再進(jìn)行量化以便部署。例如,可以使用標(biāo)準(zhǔn)TensorFlow在PC上進(jìn)行初始模型訓(xùn)練和優(yōu)化。然后模型可以進(jìn)行量化,并通過TensorFlow Lite嵌入到物聯(lián)網(wǎng)設(shè)備中。
•        量化感知訓(xùn)練可仿真推斷時量化,創(chuàng)建一個模型供下游工具用于生成量化模型。


圖3——量化模型使用低精度,從而減少存儲器和存儲需求并提高能源效率,同時仍保留相同的形狀。

雖然量化很有用,但不應(yīng)過度使用,因為它類似于通過使用較少的位表示顏色和/或使用較少的像素來壓縮數(shù)字圖像——即,會存在一個圖像變得難以解釋的點。

總結(jié)

正如我們在開頭所提到的,AI現(xiàn)在已經(jīng)深深融入嵌入式系統(tǒng)領(lǐng)域。然而,這種大眾化意味著以前不需要了解AI和ML的設(shè)計工程師正面臨將AI解決方案實現(xiàn)到其設(shè)計中的挑戰(zhàn)。

盡管創(chuàng)建ML應(yīng)用并充分利用有限硬件資源的挑戰(zhàn)可能令人望而卻步,但這對經(jīng)驗豐富的嵌入式系統(tǒng)設(shè)計人員來說并不是一個新挑戰(zhàn)。好消息是,工程社區(qū)內(nèi)有豐富的信息(和培訓(xùn)),以及像MPLAB X這樣的IDE、MPLAB ML這樣的模型構(gòu)建工具以及各種開源數(shù)據(jù)集和模型。這種生態(tài)系統(tǒng)可幫助不同理解水平的工程師快速完成現(xiàn)在可以在16位甚至8位單片機(jī)上實現(xiàn)的AL和ML解決方案。

關(guān)于作者:
Yann LeFaou是Microchip觸摸和手勢業(yè)務(wù)部的副總監(jiān)。在這個職位中,LeFaou領(lǐng)導(dǎo)一個團(tuán)隊開發(fā)電容式觸摸技術(shù),并推動公司在單片機(jī)和微處理器上的機(jī)器學(xué)習(xí)(ML)計劃。他在Microchip擔(dān)任過一系列連續(xù)的技術(shù)和市場職位,包括領(lǐng)導(dǎo)公司在電容式觸摸、人機(jī)界面和家用電器技術(shù)方面的全球市場活動。LeFaou擁有法國電力機(jī)械專業(yè)學(xué)院(ESME Sudria)的學(xué)位。

本文地址:http://m.qingdxww.cn/thread-868848-1-1.html     【打印本頁】

本站部分文章為轉(zhuǎn)載或網(wǎng)友發(fā)布,目的在于傳遞和分享信息,并不代表本網(wǎng)贊同其觀點和對其真實性負(fù)責(zé);文章版權(quán)歸原作者及原出處所有,如涉及作品內(nèi)容、版權(quán)和其它問題,我們將根據(jù)著作權(quán)人的要求,第一時間更正或刪除。
您需要登錄后才可以發(fā)表評論 登錄 | 立即注冊

廠商推薦

  • Microchip視頻專區(qū)
  • Dev Tool Bits——使用MPLAB® Discover瀏覽資源
  • Dev Tool Bits——使用條件軟件斷點宏來節(jié)省時間和空間
  • Dev Tool Bits——使用DVRT協(xié)議查看項目中的數(shù)據(jù)
  • Dev Tool Bits——使用MPLAB® Data Visualizer進(jìn)行功率監(jiān)視
  • 貿(mào)澤電子(Mouser)專區(qū)

相關(guān)視頻

關(guān)于我們  -  服務(wù)條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯(lián)系我們
電子工程網(wǎng) © 版權(quán)所有   京ICP備16069177號 | 京公網(wǎng)安備11010502021702
快速回復(fù) 返回頂部 返回列表
主站蜘蛛池模板: 国产一级精品视频 | 久久综合久久综合久久综合 | 91综合国产 | 噜噜狠狠 | 国产在线91 | 国产激情在线观看完整流畅 | 日韩欧美中文字幕一区二区三区 | 国产大战女模特在线视频 | 在线欧美精品国产综合五月 | 欧美无遮挡 | 久久r热这里有精品视频 | 亚洲视频在线观看免费 | 精品卡1卡2卡三卡免费网站视频 | 色一欲一性一乱一区二区三区 | 欧美影欧美影院免费观看视频 | a毛片免费看 | 久久a热 | 真正免费一级毛片在线播放 | a级黄色毛片三个搞一 | 男女男在线精品网站免费观看 | 欧美成人免费tv在线播放 | 99视频在线看观免费 | 中文字幕亚洲一区二区三区 | 啦啦啦手机在线播放视频 | 黄页在线播放 | 一区二区三区四区视频 | 国产亚洲91 | 2020天天操 | 精品真实国产乱文在线 | 日本高清va不卡视频在线观看 | 欧美日韩一二三 | 国产精品久久一区一区 | 欧美一区在线播放 | 久久精品8 | 精品一区二区三区的国产在线观看 | 日本特黄特色大片免费播放视频 | 国产91精品对白露脸全集观看 | 五月天男人的天堂 | 痴女中文字幕在线视频 | 两个人的视频在线观看www免费 | 亚洲欧美一区二区三区二厂 |