SEMulator3D 工藝建模在開(kāi)發(fā)早期識(shí)別工藝和設(shè)計(jì)問(wèn)題,減少了開(kāi)發(fā)延遲、晶圓制造成本和上市時(shí)間 作者:泛林集團(tuán) Semiverse Solutions 部門半導(dǎo)體工藝與整合部經(jīng)理 Brett Lowe 現(xiàn)代半導(dǎo)體工藝極其復(fù)雜,包含成百上千個(gè)互相影響的獨(dú)立工藝步驟。在開(kāi)發(fā)這些工藝步驟時(shí),上游和下游的工藝模塊之間常出現(xiàn)不可預(yù)期的障礙,造成開(kāi)發(fā)周期延長(zhǎng)和成本增加。本文中,我們將討論如何使用 SEMulator3D中的實(shí)驗(yàn)設(shè)計(jì) (DOE) 功能來(lái)解決這一問(wèn)題。 在 3D NAND 存儲(chǔ)器件的制造中,有一個(gè)關(guān)鍵工藝模塊涉及在存儲(chǔ)單元中形成金屬柵極和字線。這個(gè)工藝首先需要在基板上沉積數(shù)百層二氧化硅和氮化硅交替堆疊層。其次,在堆疊層上以最小圖形間隔來(lái)圖形化和刻蝕存儲(chǔ)孔陣列。此時(shí),每層氮化硅(即將成為字線)的外表變得像一片瑞士奶酪。在這些工藝步驟中,很難實(shí)現(xiàn)側(cè)壁剖面控制,因?yàn)榭涛g工藝中深寬比較高,且存儲(chǔ)單元孔需要極大的深度。因此,刻蝕工藝中可能會(huì)出現(xiàn)彎折、扭曲等偏差。從堆疊層頂部到底部,存儲(chǔ)單元孔直徑和孔間隔可存在最高25%的偏差。 在存儲(chǔ)單元孔中沉積存儲(chǔ)單元材料后,在區(qū)塊外邊緣上圖形化和刻蝕一系列窄長(zhǎng)的狹縫溝槽。這第二次刻蝕暴露出狹縫溝槽側(cè)壁中的犧牲氮化硅后,對(duì)其從邊緣到中間進(jìn)行橫向刻蝕,直至完全去除。(1) 隨后,沉積阻擋層化合物內(nèi)襯和導(dǎo)電金屬,填充氮化硅層邊緣到中間的空間。這一工藝會(huì)生成金屬柵極存儲(chǔ)器單元和字線。(2) 從外部存儲(chǔ)單元孔到狹縫溝槽內(nèi)邊緣的距離稱為“軌距”(如圖1)。該導(dǎo)通路徑提供一條沿字線外邊緣的低電阻傳導(dǎo)通路。字線很長(zhǎng),通常等于存儲(chǔ)區(qū)塊的整個(gè)長(zhǎng)度。為了維持所需的存儲(chǔ)器開(kāi)關(guān)速度,需要對(duì)字線電阻進(jìn)行高度控制。 圖1:虛擬模型實(shí)驗(yàn)的俯視圖,每次實(shí)驗(yàn)(a、b和c)設(shè)置不同的實(shí)驗(yàn)條件。a) 模型中有較大存儲(chǔ)單元孔、有空隙、無(wú)字線導(dǎo)通路徑。字線空隙標(biāo)紅。由于存儲(chǔ)單元孔間距較小,空隙引發(fā)封閉。b) 模型中有較大存儲(chǔ)單元孔、字線導(dǎo)通路徑正常、無(wú)空隙。c) 模型中有正常大小存儲(chǔ)單元孔、字線導(dǎo)通路徑正常。 我們使用 SEMulator3D 模型以更好地研究 3D NAND 中字線電阻的影響因素。該研究表明,僅因?yàn)槿コ舜鎯?chǔ)單元孔中的導(dǎo)電材料,造成的 3D NAND 字線電阻遠(yuǎn)大于預(yù)期值。這表明,去除犧牲氮化硅,或用導(dǎo)電金屬替換犧牲氮化硅的過(guò)程會(huì)形成空隙,從而增加字線電阻。SEMulator3D 虛擬模型顯示,如果存儲(chǔ)單元孔過(guò)大,或孔間隔過(guò)窄,通向字線內(nèi)部的橫向沉積通路將被封閉,并在導(dǎo)電金屬中形成空隙(如圖2)。 圖2:SEMulator3D 虛擬模型展示了字線邊緣的三平面橫截面圖。金屬導(dǎo)體填充沒(méi)有從狹縫溝槽邊緣的封閉處持續(xù)到字線中心。電流僅通過(guò)內(nèi)襯,從字線中心傳導(dǎo)到封閉處。 我們使用 SEMulator3D 工藝模型,以不同的存儲(chǔ)單元孔直徑、軌距和空隙定位,進(jìn)行了200次虛擬模型實(shí)驗(yàn)。用 SEMulator3D 電性分析軟件包模擬了字線電阻,隨后從虛擬模型實(shí)驗(yàn)中提取字線電阻,并繪制了電阻增加百分比與軌距、存儲(chǔ)單元孔徑增加和帶有空隙的對(duì)比圖(如圖3)。 圖3顯示了空隙形成對(duì)字線電阻的影響。如果比較無(wú)空隙時(shí)的字線電阻增加(紅線)和存在空隙時(shí)的字線電阻增加(藍(lán)線),空隙的影響比較明顯。不考慮存儲(chǔ)孔大小,空隙的存在使字線電阻增加了55%。增加外軌距后,存儲(chǔ)單元孔大小對(duì)字線電阻的影響減少200%,并將引入空隙對(duì)字線電阻的影響降低到可以忽略不計(jì)的程度。結(jié)果表明,字線電阻隨存儲(chǔ)孔大小增加而增加。 圖3:字線電阻增加(單位:百分比)與存儲(chǔ)單元孔直徑增加(單位:百分比)和軌距(單位:nm)的關(guān)系圖。紅線表示模型中包含字線空隙的結(jié)果(正確),藍(lán)線表示模型中刪除字線空隙并對(duì)其填充的結(jié)果(錯(cuò)誤)。 隨著軌距趨于零,迫使更多電流流入字線內(nèi)部區(qū)域。當(dāng)存儲(chǔ)孔尺寸增加時(shí),空隙尺寸增加,低電阻導(dǎo)電金屬和較高電阻的阻擋層化合物內(nèi)襯間的體積減小(如圖4)。當(dāng)保留字線軌距時(shí),字線電阻對(duì)存儲(chǔ)孔尺寸和金屬空隙的依賴降至最低。 圖4:虛擬模型實(shí)驗(yàn)中的電流密度俯視圖,每項(xiàng)設(shè)定(如圖a、b和c所示)根據(jù)不同實(shí)驗(yàn)有所變化(參閱圖1)。a) 導(dǎo)通路徑不連續(xù),導(dǎo)致電流流入字線內(nèi)部。b) 存儲(chǔ)孔大小與圖a中的一致,但較寬的導(dǎo)通路徑使電流沿著字線外邊緣流動(dòng)。c) 字線軌距產(chǎn)生更均勻的電流密度圖形。 使用 SEMulator3D 空隙定位,虛擬模型可以在不考慮存儲(chǔ)孔大小的情況下,預(yù)測(cè)空隙對(duì)字線電阻的影響。在實(shí)際的硅晶圓工藝中,沒(méi)有辦法在 3D NAND 工藝開(kāi)發(fā)中對(duì)空隙形成和存儲(chǔ)單元孔大小進(jìn)行分離實(shí)驗(yàn)。SEMulator3D 可實(shí)現(xiàn)晶圓廠中很難或者不可能進(jìn)行的實(shí)驗(yàn)。 我們用 SEMulator3D 工藝建模模擬了 3D NAND 字線形成工藝。我們觀察到,上游存儲(chǔ)單元空隙模塊會(huì)對(duì)下游字線形成模塊產(chǎn)生負(fù)面影響,并導(dǎo)致字線電阻的急劇增加。通過(guò)虛擬模型,我們得以模擬上游和下游模塊間存在的問(wèn)題,并用多次實(shí)驗(yàn)探索潛在的解決方案(在我們的案例中,解決方案涉及設(shè)計(jì)上的調(diào)整)。SEMulator3D 工藝建模可以在開(kāi)發(fā)早期識(shí)別工藝和設(shè)計(jì)問(wèn)題,其間無(wú)需大量的硅晶圓實(shí)驗(yàn),這減少了開(kāi)發(fā)延遲、晶圓制造成本和上市時(shí)間。 參考資料: [1] Handy, “An Alternative Kind of Vertical 3D NAND String”, Jim Handy, Objective Analysis, on Semiconductor Memories, Nov 8, 2013. [2] A. Goda, “Recent Progress on 3D NAND Flash Technologies”, Electronics2021, 10(24), 3156. |