国产毛片a精品毛-国产毛片黄片-国产毛片久久国产-国产毛片久久精品-青娱乐极品在线-青娱乐精品

如何通過最小化熱回路PCB ESR和ESL來優(yōu)化開關(guān)電源布局

發(fā)布時間:2023-1-31 18:59    發(fā)布者:eechina
關(guān)鍵詞: 熱回路 , 開關(guān)電源 , ESR , ESL
作者:ADI產(chǎn)品應(yīng)用高級工程師Jingjing Sun,ADI產(chǎn)品應(yīng)用經(jīng)理Ling Jiang,ADI產(chǎn)品應(yīng)用高級總監(jiān)Henry Zhang

問題:
能否優(yōu)化開關(guān)電源的效率?

答案:
當(dāng)然可以,最小化熱回路PCB ESR和ESL是優(yōu)化效率的重要方法。

簡介

對于功率轉(zhuǎn)換器,寄生參數(shù)最小的熱回路PCB布局能夠改善能效比,降低電壓振鈴,并減少電磁干擾(EMI)。ADI將在本文討論如何通過最小化PCB的等效串聯(lián)電阻(ESR)和等效串聯(lián)電感(ESL)來優(yōu)化熱回路布局設(shè)計。文中研究并比較了影響因素,包括解耦電容位置、功率FET尺寸和位置以及過孔布置。通過實驗驗證了分析結(jié)果,并總結(jié)了最小化PCB ESR和ESL的有效方法。

熱回路和PCB布局寄生參數(shù)

開關(guān)模式功率轉(zhuǎn)換器的熱回路是指由高頻(HF)電容和相鄰功率FET形成的臨界高頻交流電流回路。它是功率級PCB布局的最關(guān)鍵部分,因為它包含高dv/dt和di/dt噪聲成分。設(shè)計不佳的熱回路布局會產(chǎn)生較大的PCB寄生參數(shù),包括ESL、ESR和等效并聯(lián)電容(EPC),這些參數(shù)對功率轉(zhuǎn)換器的效率、開關(guān)性能和EMI性能有重大影響。


圖1.帶熱回路ESR和ESL的降壓轉(zhuǎn)換器

圖1顯示了同步降壓DC-DC轉(zhuǎn)換器原理圖。熱回路由MOSFET M1和M2以及解耦電容CIN形成。M1和M2的開關(guān)動作會產(chǎn)生高頻di/dt和dv/dt噪聲。CIN提供了一個低阻抗路徑來旁路高頻噪聲成分。然而,器件封裝內(nèi)和熱回路PCB走線上存在寄生阻抗(ESR、ESL)。高di/dt噪聲通過ESL會引起高頻振鈴,進而導(dǎo)致EMI。ESL中存儲的能量在ESR上耗散,導(dǎo)致額外的功率損耗。因此,應(yīng)盡量減小熱回路PCB的ESR和ESL,以減少高頻振鈴并提高效率。

準確提取熱回路的ESR和ESL,有助于預(yù)測開關(guān)性能并改進熱回路設(shè)計。器件的封裝和PCB走線均會影響回路的總寄生參數(shù)。本文主要關(guān)注PCB布局設(shè)計。有一些工具可幫助用戶提取PCB寄生參數(shù),例如Ansys Q3D、FastHenry/FastCap、StarRC等。Ansys Q3D之類的商用工具可提供準確的仿真,但通常價格昂貴。FastHenry/FastCap是一款基于部分元件等效電路(PEEC)數(shù)值建模的免費工具1 ,可以通過編程提供靈活的仿真來探索不同的版圖設(shè)計,但需要額外的編程。FastHenry/FastCap寄生參數(shù)提取的有效性和準確性已經(jīng)過驗證,并與Ansys Q3D進行了比較,結(jié)果一致2,3 。在本文中,F(xiàn)astHenry用作提取PCB ESR和ESL的經(jīng)濟高效的工具。

熱回路PCB的ESR和ESL與解耦電容位置的關(guān)系

本部分基于ADI的LTM4638 µModule穩(wěn)壓器演示板DC2665A-B來研究CIN位置的影響。LTM4638是一款集成式20VIN、15A降壓型轉(zhuǎn)換器模塊,采用小型6.25mm × 6.25mm × 5.02mm BGA封裝。它具有高功率密度、快速瞬態(tài)響應(yīng)和高效率特性。模塊內(nèi)部集成了一個小的高頻陶瓷CIN,不過受限于模塊封裝尺寸,這還不夠。圖2至圖4展示了演示板上的三種不同熱回路,這些熱回路使用了額外的外部CIN。第一種是垂直熱回路1(圖2),其中CIN1放置在μModule穩(wěn)壓器下方的底層。µModule VIN和GND BGA引腳通過過孔直接連接到CIN1。這些連接提供了演示板上的最短熱回路路徑。第二種熱回路是垂直熱回路2(圖3),其中CIN2仍放置在底層,但移至μModule穩(wěn)壓器的側(cè)面區(qū)域。其結(jié)果是,與垂直熱回路1相比,該熱回路添加了額外的PCB走線,預(yù)計ESL和ESR更大。第三種熱回路選項是水平熱回路(圖4),其中CIN3放置在靠近μModule穩(wěn)壓器的頂層。µModule VIN和GND引腳通過頂層銅連接到CIN3,而不經(jīng)過過孔。然而,頂層的VIN銅寬度受其他引腳排列的限制,導(dǎo)致回路阻抗高于垂直熱回路1。表1比較了FastHenry提取的熱回路 PCB ESR和ESL。正如預(yù)期的那樣,垂直熱回路1的PCB ESR和ESL最低。


圖2.垂直熱回路1:(a)俯視圖和(b)側(cè)視圖


圖3.垂直熱回路2:(a)俯視圖和(b)側(cè)視圖


圖4.水平熱回路:(a)俯視圖和(b)側(cè)視圖

表1.使用FastHenry提取的不同熱回路的PCB ESR和ESL
熱回路ESR (ESR1 + ESR2)、600kHz (mΩ)ESL (ESL1 + ESL2)、200MHz (nH)
垂直熱回路1
0.7
0.54
垂直熱回路2
2.5
1.17
水平熱回路
3.3
0.84

為了通過實驗驗證不同熱回路的ESR和ESL,ADI測試了12V轉(zhuǎn)1V CCM運行時演示板的效率和VIN交流紋波。理論上,ESR越低,則效率越高,而ESL越小,則VSW振鈴頻率越高,VIN紋波幅度越低。圖5a顯示了實測效率。垂直熱回路1的效率最高,因為其ESR最低。水平熱回路和垂直熱回路1之間的損耗差異也是基于提取的ESR計算的,這與圖5b所示的測試結(jié)果一致。圖5c中的VIN HF紋波波形是在CIN上測試的。水平熱回路具有更高的VIN紋波幅度和更低的振鈴頻率,因此驗證了其回路ESL高于垂直熱回路1。另外,由于回路ESR更高,因此水平熱回路的VIN紋波衰減速度快于垂直熱回路1。此外,較低的VIN紋波降低了EMI,因而可以使用較小的EMI濾波器


圖5.演示板測試結(jié)果:(a)效率,(b)水平回路與垂直回路1之間的損耗差異,(c) 15 A輸出時M1導(dǎo)通期間的VIN紋波

熱回路PCB ESR和ESL與MOSFET尺寸和位置的關(guān)系

對于分立式設(shè)計,功率FET的布置和封裝尺寸對熱回路ESR和ESL也有重大影響。本部分ADI對使用功率FET M1和M2以及解耦電容CIN的典型半橋熱回路進行了建模和研究。圖6比較了常見功率FET封裝尺寸和放置位置。表2顯示了每種情況下提取的ESR和ESL。


圖6.熱回路PCB模型:(a) 5mm × 6mm MOSFET,直線布置;(b) 5mm × 6mm MOSFET,以90°形狀布置;(c) 5mm × 6mm MOSFET,以180°形狀布置;(d) 兩個并聯(lián)的3.3mm × 3.3mm MOSFET,以90°形狀布置;(e) 兩個并聯(lián)的3.3mm × 3.3mm MOSFET,以90°形狀布置,帶有接地層;(f) 對稱的3.3mm × 3.3mm MOSFET,位于頂層和底層,以90°形狀布置。

表2.對于不同器件形狀和位置,使用FastHenry提取的熱回路PCB ESR和ESL
 ESR1 (mΩ),2MHz
ESR2 (mΩ),2MHz
ESR3 (mΩ),2MHzESRTOTAL (mΩ),2MHz相對于(a)的ESR變化率 ESL1 (nH),200MHzESL2 (nH),200MHzESL3 (nH),200MHzESLTOTAL (nH),200MHz相對于(a)的ESL變化率
(a)
0.59
2.65
0.45
3.69
N/A
0.42
2.8
0.23
3.45
N/A
(b)
0.59
0.3
0.38
1.27
-66%
0.42
0.09
0.17
0.67
-81%
(c)
0.24
0.27
0.83
1.35
-63%
0.07
0.07
0.52
0.66
-81%
(d)
0.44
0.3
0.28
1.01
-73%
0.25
0.09
0.08
0.42
-88%
(e)
0.44
0.27
0.26
0.97
-74%
0.21
0.08
0.07
0.36
-90%
(f)
0.31
0.27
0.13
0.7
-81%
0.12
0.07
0.02
0.21
-94%

情況(a)至(c)展示了三種常見功率FET布置,其中采用5mm × 6mm MOSFET。熱回路的物理長度決定了寄生阻抗。與情況(a)相比,情況(b)中的90°形狀布置和情況(c)中的180°形狀布置的回路路徑更短,導(dǎo)致ESR降低60%,ESL降低80%。由于90°形狀布置顯示出了優(yōu)勢,可基于情況(b)研究更多情況,以進一步降低回路ESR和ESL。情況(d)將一個5mm × 6mm MOSFET替換為兩個并聯(lián)的3.3mm × 3.3mm MOSFET。由于MOSFET尺寸更小,回路長度進一步縮短,導(dǎo)致回路阻抗降低7%。情況(e)將一個接地層放置在熱回路層下方,與情況(d)相比,熱回路ESR和ESL進一步降低2%。原因是接地層上產(chǎn)生了渦流,其感應(yīng)出相反的磁場,相當(dāng)于降低了回路阻抗。情況(f)構(gòu)建了另一個熱回路層作為底層。如果將兩個并聯(lián)MOSFET對稱布置在頂層和底層,并通過過孔連接,則由于并聯(lián)阻抗,熱回路PCB ESR和ESL的降低更加明顯。因此,在頂層和底層上以對稱90°形狀或180°形狀布置較小尺寸的器件,可以獲得最低的PCB ESR和ESL。

為了通過實驗驗證MOSFET布置的影響,可以使用ADI的高效率4開關(guān)同步降壓-升壓控制器演示板LT8390/DC2825A和LT8392/DC2626A4。如圖7a和圖7b所示,DC2825A采用直線MOSFET布置,DC2626A采用90°形狀的MOSFET布置。為了進行公平比較,兩個演示板配置了相同的MOSFET和解耦電容,并在36V轉(zhuǎn)12V/10A、300kHz降壓操作下進行了測試。圖7c顯示了M1導(dǎo)通時刻測得的VIN交流紋波。采用90°形狀的MOSFET布置時,VIN紋波的幅度更低,諧振頻率更高,這就驗證了熱回路路徑較短導(dǎo)致PCB ESL更小。相反,直線MOSFET布置的熱回路更長,ESL更高,導(dǎo)致VIN紋波幅度要高得多,并且諧振頻率更低。根據(jù)Cho和Szokusha研究的EMI測試結(jié)果,較高的輸入電壓紋波還會導(dǎo)致EMI輻射更嚴重4。


圖7.(a) LT8390/DC2825A熱回路,MOSFET以直線布置;(b) LT8392/DC2626A熱回路,MOSFET以90°形狀布置;(c) M1導(dǎo)通時的VIN紋波波形。

熱回路PCB的ESR和ESL與過孔布置的關(guān)系

熱回路中的過孔布局對回路ESR和ESL也有重要影響。圖8對使用兩層PCB結(jié)構(gòu)和直線布置功率FET的熱回路進行了建模。FET放置在頂層,第二層是接地層。CIN GND焊盤和M2源極焊盤之間的寄生阻抗Z2是熱回路的一部分,作為示例進行研究。Z2是從FastHenry提取的。表3總結(jié)并比較了不同過孔布置的仿真ESR2和ESL2。


圖8.熱回路PCB模型,(a) 5個GND過孔靠近CIN和M2布置;(b) 14個GND過孔布置在CIN和M2之間;(c) 基于(b),GND上再布置6個過孔;(d) 基于(c),GND區(qū)域上再布置9個過孔。

通常,添加更多過孔會降低PCB寄生阻抗。然而,ESR2和ESL2的降低程度與過孔數(shù)量并不是線性比例關(guān)系。靠近引腳焊盤的過孔,所導(dǎo)致的PCB ESR和ESL的降低最明顯。因此,對于熱回路布局設(shè)計,必須將幾個關(guān)鍵過孔布置在靠近CIN和MOSFET焊盤的位置,以使高頻回路阻抗最小。

表3.使用不同過孔布置時提取的熱回路PCB ESR2和ESL2
情況
ESR2 (mΩ),2MHz
相對于初始情況的ESR變化率
ESL2 (nH),200MHz
相對于初始情況的ESL變化率
無過孔的初始情況
2.67
N/A
1.19
N/A
(a)
1.73
-35.2%
0.84
-29.8%
(b)
1.68
-37.1%
0.82
-30.8%
(c)
1.67
-37.5%
0.82
-31%
(d)
1.65
-38.2%
0.82
-31.4%

結(jié)論

減小熱回路的寄生參數(shù)有助于提高電源效率,降低電壓振鈴,并減少EMI。為了盡量減小PCB寄生參數(shù),ADI研究并比較了使用不同解耦電容位置、MOSFET尺寸和位置以及過孔布置的熱回路布局設(shè)計。更短的熱回路路徑、更小尺寸的MOSFET、對稱的90°形狀和180°形狀MOSFET布置、靠近關(guān)鍵元器件的過孔,均有助于實現(xiàn)最低的熱回路PCB ESR和ESL。

參考資料

1Mattan Kamon、Michael Tsuk和Jacob White。 “FASTHENRY: A Multipole-Accelerated 3-D Inductance Extraction Program.” IEEE Transactions on Microwave Theory and Techniques,第42卷,1994年。
2Andreas Musing、Jonas Ekman和Johann W. Kolar。 “Efficient Calculation of Non-Orthogonal Partial Elements for the PEEC Method.” IEEE Transactions on Magnetics,第45卷,2009年。
3Ren Ren、Zhou Dong和Fei Fred Wang。 “Bridging Gaps in Paper Design Considering Impacts of Switching Speed and Power-Loop Layout.” IEEE,2020年。
4Yonghwan Cho和Keith Szolusha。“低輻射的4開關(guān)降壓-升壓型控制器布局——單熱回路與雙熱回路”。模擬對話,第55卷,2021年7月。
5Henry J. Zhang。“非隔離開關(guān)電源的PCB布局考量”。ADI公司,2012年。
6Christian Kueck。“電源布局和EMI”。ADI公司,2012年。

關(guān)于作者

Jingjing Sun于2022年畢業(yè)于田納西大學(xué)諾克斯維爾分校,獲電氣工程博士學(xué)位。畢業(yè)后,她加入了ADI公司電源產(chǎn)品部,工作地點位于美國加利福尼亞灣區(qū)。她目前是一名高級應(yīng)用工程師,負責(zé)支持針對多市場應(yīng)用的μModule產(chǎn)品。

Ling Jiang于2018年畢業(yè)于田納西大學(xué)諾克斯維爾分校,獲電氣工程博士學(xué)位。畢業(yè)后,她加入了ADI公司電源產(chǎn)品部,工作地點位于美國加利福尼亞灣區(qū)。她目前是一名應(yīng)用經(jīng)理,負責(zé)支持針對多市場應(yīng)用的μModule產(chǎn)品。

Dr. Henry Zhang(張勁東博士)是ADI的Power by Linear™應(yīng)用總監(jiān)。他于1994年獲得中國浙江大學(xué)頒發(fā)的電子工程學(xué)士學(xué)位,分別于1998年和2001年獲得弗吉尼亞理工學(xué)院暨州立大學(xué)(黑堡)頒發(fā)的電子工程碩士學(xué)位和博士學(xué)位。他于2001年加入凌力爾特(現(xiàn)在已成為ADI的一部分)。

本文地址:http://m.qingdxww.cn/thread-809801-1-1.html     【打印本頁】

本站部分文章為轉(zhuǎn)載或網(wǎng)友發(fā)布,目的在于傳遞和分享信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責(zé);文章版權(quán)歸原作者及原出處所有,如涉及作品內(nèi)容、版權(quán)和其它問題,我們將根據(jù)著作權(quán)人的要求,第一時間更正或刪除。
您需要登錄后才可以發(fā)表評論 登錄 | 立即注冊

廠商推薦

  • Microchip視頻專區(qū)
  • 使用SAM-IoT Wx v2開發(fā)板演示AWS IoT Core應(yīng)用程序
  • 使用Harmony3加速TCP/IP應(yīng)用的開發(fā)培訓(xùn)教程
  • 集成高級模擬外設(shè)的PIC18F-Q71家族介紹培訓(xùn)教程
  • 探索PIC16F13145 MCU系列——快速概覽
  • 貿(mào)澤電子(Mouser)專區(qū)

相關(guān)視頻

關(guān)于我們  -  服務(wù)條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯(lián)系我們
電子工程網(wǎng) © 版權(quán)所有   京ICP備16069177號 | 京公網(wǎng)安備11010502021702
快速回復(fù) 返回頂部 返回列表
主站蜘蛛池模板: 99这里只有精品视频 | 日韩精品特黄毛片免费看 | 免费看黄网站大全 | 久草精品在线观看 | 亚洲日本一区二区三区高清在线 | 亚洲一区二区免费视频 | 日韩在线网址 | 久久一级黄色片 | 日韩男人的天堂 | 亚州一级 | 色在线免费视频 | 另类国产精品一区二区 | 欧美日韩激情一区二区三区 | 欧美亚洲国产精品久久久久 | h视频在线观看免费完整版 h视频在线观看免费观看 | 久草导航 | 在线中文字幕亚洲 | 中文字幕午夜乱理片 | 国产精品三 | 欧美不在线 | 中文字幕在线视频播放 | 在线香蕉视频 | 中文国产成人精品久久水 | 成年人黄视频在线观看 | 日本天堂影院在线播放 | 亚洲国产成人精品不卡青青草原 | 羞羞网站免费观看 | 久久综合久久鬼色 | 888午夜不卡理论久久 | 男女爱爱视频免费看 | 午夜视频在线观看一区二区 | 亚洲性一级理论片在线观看 | 欧美日韩国产中文字幕 | 粉嫩极品国产 | 青青草国产在线 | 日韩视频中文字幕 | 成年人在线观看免费视频 | 亚洲精品h | 久久美女福利视频 | 精品videoss另类日本 | 日韩一区二区久久久久久 |