光敏電阻是采用半導體材料制作,利用內光電效應工作的光電元件。它在光線的作用下其阻值往往變小,這種現 象稱為光導效應,因此,光敏電阻又稱光導管。 用于制造光敏電阻的材料主要是金屬的硫化物、硒化物和碲化物等半導體。通常采用涂敷、噴 涂、燒結等方法在絕緣襯底上制作很薄的光敏電阻體及梳狀歐姆電極,然后接出引線,封裝在具有透光鏡的密封殼體內,以免受潮影響其靈敏度。光敏電阻的原理結 構如圖所示。在黑暗環境里,它的電阻值很高,當受到光照時,只要光子能量大于半導體材料的禁帶寬度,則價帶中的電子吸收一個光子的能量后可躍遷到導帶,并 在價帶中產生一個帶正電荷的空穴,這種由光照產生的電子—空穴對增加了半導體材料中載流子的數目,使其電阻率變小,從而造成光敏電阻阻值下降。光照愈強, 阻值愈低。入射光消失后,由光子激發產生的電子—空穴對將逐漸復合,光敏電阻的阻值也就逐漸恢復原值。 在光敏電阻兩端的金屬電極之間加 上電壓,其中便有電流通過,受到適當波長的光線照射時,電流就會隨光強的增加而變大,從而實現光電轉換。光敏電阻沒有極性,純粹是一個電阻器件,使用時既 可加直流電壓,也可以加交流電壓。 基本特性及其主要參數 1、暗電阻、亮電阻 光敏電阻在室 溫和全暗條件下測得的穩定電阻值稱為暗電阻,或暗阻。此時流過的電流稱為暗電流。例如MG41-21型光敏電阻暗阻大于等于0.1M。 光 敏電阻在室溫和一定光照條件下測得的穩定電阻值稱為亮電阻或亮阻。此時流過的電流稱為亮電流。MG41-21型光敏電阻亮阻小于等于1k。 亮 電流與暗電流之差稱為光電流。 顯然,光敏電阻的暗阻越大越好,而亮阻越小越好,也就是說暗電流要小,亮電流要大,這樣光敏電阻的靈敏度 就高。 2、伏安特性 在一定照度下,光敏電阻兩端所加的電壓與流過光敏電阻的電流之間的關系,稱為伏安特性。 由 圖2.6.2可知,光敏電阻伏安特性近似直線,而且沒有飽和現象。受耗散功率的限制,在使用時,光敏電阻兩端的電壓不能超過最高工作電壓,圖中虛線為允許 功耗曲線,由此可確定光敏電阻正常工作電壓。 3、光電特性 光敏電阻的光電流與光照度之間的關系稱為光電 特性。如圖2.6.3所示,光敏電阻的光電特性呈非線性。因此不適宜做檢測元件,這是光敏電阻的缺點之一,在自動控制中它常用做開關式光電傳感器。 4、 光譜特性 對于不同波長的入射光,光敏電阻的相對靈敏度是不相同的。各種材料的光譜特性如圖2.6.4所示。從圖中看出,硫化鎘的峰值在 可見光區域,而硫化鉛的峰值在紅外區域,因此在選用光敏電阻時應當把元件和光源的種類結合起來考慮,才能獲得滿意的結果。 5、 頻率特 性 當光敏電阻受到脈沖光照時,光電流要經過一段時間才能達到穩態值,光照突然消失時,光電流也不立刻為零。這說明光敏電阻有時延特性。 由于不同材料的光敏電阻時延特性不同,所以它們的頻率特性也不相同。圖2.6.5給出相對靈敏度Kr,與光強變化頻率f之間的關系曲線,可以看出硫化鉛的 使用頻率比硫化鉈高的多。但多數光敏電阻的時延都較大,因此不能用在要求快速響應的場合,這是光敏電阻的一個缺陷。 6、溫度特性 光敏電阻和其他半導 體器件一樣,受溫度影響較大,當溫度升高時,它的暗電阻會下降。溫度的變化對光譜特性也有很大影響。圖2.6.6是硫化鉛光敏電阻的光譜溫度特性曲線。從 圖中可以看出,它的峰值隨著溫度上升向波長短的方向移動。因此,有時為了提高靈敏度,或為了能接受遠紅外光而采取降溫措施。 常 用的光敏電阻器是硫化鎘光敏電阻器,它是由半導體材料制成的。光敏電阻器的阻值隨入射光線(可見光)的強弱變化而變化,在黑暗條件下,它的阻值(暗阻)可 達1"10MΩ;在強光條件(100LX)下,它阻值(亮阻)僅有幾百至數千歐姆。光敏電阻器對光的敏感性(即光譜特性)與人眼對可見光 (0.4"0.76)μm的響應很接近,只要人眼可感受的光,都會引起它的阻值變化。所以設計光控電路時,都用白熾燈泡(小電珠)光線或自然光線作控制光 源,使設計大為簡化。 光敏電阻隨入射光線的強弱其對應的阻值變化不是線性的,也就不能用它作光電的線性變換,這是使用者應注意 的地方。初學者可購置一只光敏電阻器(MG45型),在夜間點一盞60"100W的白熾燈,用萬用表直接測量光敏電阻器的阻值。測量時,應把光敏電阻對著 白熾燈的光,再逐漸拉開與燈的距離(由近到遠),觀察萬用表指示的阻值變化,可以直觀驗證光敏電阻的特牲,以加深對它的感性認識。 常用的光敏電阻器型號有密封型的MG41、MG42、MG43和非密封型的MG45(售價便宜)。它們的額定功率均在200mW以下。 |