国产毛片a精品毛-国产毛片黄片-国产毛片久久国产-国产毛片久久精品-青娱乐极品在线-青娱乐精品

基于混沌蟻群的神經(jīng)網(wǎng)絡(luò)速度辨識器研究

發(fā)布時間:2010-11-28 12:31    發(fā)布者:designer
近年來,由于神經(jīng)網(wǎng)絡(luò)的研究取得了長足的進(jìn)展,基于BP神經(jīng)網(wǎng)絡(luò)模型的速度辨識方法得到了廣泛研究,但其仍存在收斂速度慢、易陷入局部極小值等問題,因此,對神經(jīng)網(wǎng)絡(luò)的優(yōu)化一直是當(dāng)前的研究熱點(diǎn)。本文將混沌引入到蟻群算法(Ant Colony Optimization,ACO)當(dāng)中,以形成混沌蟻群算法(Chaos Ant Colony Optimization,CACO),從而提高了對于BP神經(jīng)網(wǎng)絡(luò)的優(yōu)化效率和精度,解決了上述問題;同時,也在對異步電機(jī)直接轉(zhuǎn)矩控制(DTC)轉(zhuǎn)速辨識的仿真試驗(yàn)中,實(shí)現(xiàn)了對電機(jī)轉(zhuǎn)速的準(zhǔn)確辨識。

1 BP神經(jīng)網(wǎng)絡(luò)的缺點(diǎn)

BP神經(jīng)網(wǎng)絡(luò)是目前控制領(lǐng)域中應(yīng)用廣泛的一種神經(jīng)網(wǎng)絡(luò)模型,其學(xué)習(xí)過程由信息前向計算和誤差反向傳播過程組成。它采用梯度搜索技術(shù),可使網(wǎng)絡(luò)的實(shí)際輸出值與期望輸出值的誤差均方值最小化。此外,該網(wǎng)絡(luò)還具有良好的非線性映射和泛化能力。BP神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)如圖1所示。






BP神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)模型為:





其中,xj為輸入層節(jié)點(diǎn)輸出,yi為隱含層節(jié)點(diǎn)輸出,O1為輸出層輸出。輸入層節(jié)點(diǎn)與隱含層節(jié)點(diǎn)間的網(wǎng)絡(luò)連接權(quán)值為ωij;隱含層節(jié)點(diǎn)與輸出層節(jié)點(diǎn)間的網(wǎng)絡(luò)連接權(quán)值為Tli;輸出層節(jié)點(diǎn)l的期望輸出為t1。f(net)為傳遞函數(shù)。為此,其網(wǎng)絡(luò)連接權(quán)值的調(diào)整公式如下:





其中,η為學(xué)習(xí)速率(η>0);k為訓(xùn)練次數(shù),α為平滑因子(0<α<1),為隱層節(jié)點(diǎn)誤差。

2 BP神經(jīng)網(wǎng)絡(luò)的混沌蟻群優(yōu)化過程

2.1基本蟻群算法

ACO的基本思路是:在算法的初始時刻,將一定數(shù)量的螞蟻隨機(jī)放在給定的N座城市上,并設(shè)此時各路徑上的信息素相等。螞蟻在運(yùn)動過程中根據(jù)各條路徑上的信息素量獨(dú)立選擇下一城市。螞蟻系統(tǒng)使用的轉(zhuǎn)移規(guī)則是根據(jù)螞蟻在兩個城市之間的轉(zhuǎn)移概率來進(jìn)行路徑選擇。在完成一次循環(huán)后,螞蟻在路徑上釋放一定量的信息素。完成一次循環(huán)所走過的路徑就是問題的一個解,當(dāng)所有螞蟻都完成循環(huán)后,即可得到最優(yōu)解。

蟻群算法的基本公式如下:





2.2混沌蟻群算法

混沌蟻群算法(CACO)是受到自然界螞蟻?zhàn)咝械幕煦缣攸c(diǎn)和整個種群的自組織特點(diǎn)的啟發(fā)。它利用混沌的遍歷性和隨機(jī)性等特點(diǎn)來將混沌擾動算子引入蟻群算法,并將帶有混沌特征的初始化變量線性映射到變量取值區(qū)間。該方法兼顧了混沌動態(tài)搜索和智能搜索的特點(diǎn),可有效地避免搜索過程中陷入局部最優(yōu),從而達(dá)到提高算法速度和全局尋優(yōu)的能力。

(1)混沌初始化

設(shè)τij(t)為t時刻路徑上的信息濃度,利用混沌運(yùn)動的遍歷性進(jìn)行混沌初始化。混沌變量選擇典型的混沌系統(tǒng)Logistic映射迭代公式如下:





式中,μ為控制參數(shù),當(dāng)μ=4時,Logistic完全處于混沌狀態(tài),此時系統(tǒng)在[0,1]之間具有遍歷性。如果利用全排列理論將每個混沌變量對應(yīng)于一條路徑,也就是為每條路段上的信息素濃度根據(jù)混沌量給定初始值τij(0),就可以有效地解決基本蟻群算法收斂速度慢的問題。

(2)引入混沌擾動量

在蟻群算法中,如果螞蟻后從點(diǎn)i至某一點(diǎn)j,則在路徑ij上留下信息素τij(t)。螞蟻k在走完任意一路徑以后,將按式(5)更新該路徑上的信息素。可以看出,此更新方法在加快尋優(yōu)的同時,卻容易陷入局部最優(yōu)解。因此,在此處引入混沌擾動量來調(diào)整信息素,以使其避免陷入局部最優(yōu)極值區(qū)間。改進(jìn)后的式子為:





其中,Xij為混沌擾動量,可采用典型混沌系統(tǒng)Logistic映射得到,q為相關(guān)系數(shù)。

2.3 混沌蟻群算法的實(shí)現(xiàn)步驟

實(shí)現(xiàn)混沌蟻群算法的具體步驟如下:

Step1:初始化BP網(wǎng)絡(luò)結(jié)構(gòu),設(shè)定網(wǎng)絡(luò)的輸入層、隱含層、輸出層的神經(jīng)元個數(shù);

Step2:混沌初始化信息素濃度、個體最優(yōu)和全局最優(yōu);

Step3:用公式(4)計算每只螞蟻的轉(zhuǎn)移概率;

Step4:根據(jù)每只螞蟻的轉(zhuǎn)移概率得出本次最優(yōu)路徑并最優(yōu)值比較,若更優(yōu),則更新最優(yōu)值;

Step5:將每只螞蟻的最優(yōu)值與整個蟻群的最優(yōu)值相比較,若更優(yōu),則其將成為整個蟻群新的最優(yōu)值;

Step6:更新并按公式(9)修改路徑ij上的信息素濃度;

Step7:比較次數(shù)是否達(dá)到預(yù)設(shè)的精度,若滿足預(yù)設(shè)精度,則最后一次迭代的全局最優(yōu)值中每一維的權(quán)值和閾值就是所求的;否則返回step3,算法繼續(xù)迭代,直至滿足條件為止。

3基于DTC的系統(tǒng)仿真

3.1直接轉(zhuǎn)矩控制系統(tǒng)結(jié)構(gòu)

直接轉(zhuǎn)矩控制(DTC)系統(tǒng)的結(jié)構(gòu)原理如圖2所示。在α-β坐標(biāo)系下,通過獲得定子電壓Usα、Usβ,定子電流Isα、Isβ及定子電流導(dǎo)數(shù)pIsα、pIsβ歸一化后,即可構(gòu)成神經(jīng)網(wǎng)絡(luò)的六個輸入,再經(jīng)過反歸一化,即可得到轉(zhuǎn)子轉(zhuǎn)速ω,從而構(gòu)建一個動態(tài)轉(zhuǎn)速估計器。

3.2仿真實(shí)驗(yàn)

在MATLAB/Simulink仿真環(huán)境下建立直接轉(zhuǎn)矩控制系統(tǒng)的仿真平臺時,系統(tǒng)采樣周期可設(shè)定為0.1 ms,異步感應(yīng)電動機(jī)的其它各參數(shù)為:額定功率PN=15 kW,額定電壓VN=380 V,額定頻率fN=50 Hz,定子電阻Rs=0.435 Ω,轉(zhuǎn)子電阻Rr=0.816 Ω,定子電感Ls=0.002H,轉(zhuǎn)子電感Lr=0.002H,定轉(zhuǎn)子互感Lm=0.06931H,極對數(shù)p=2,轉(zhuǎn)動慣量J=0.0918 kg.m2。設(shè)定電機(jī)轉(zhuǎn)速ω=20 rad/s時,采取1000組數(shù)據(jù)作為訓(xùn)練樣本,5000組數(shù)據(jù)作為驗(yàn)證樣本,最大訓(xùn)練次數(shù)設(shè)定為2000次,最小容許誤差設(shè)定為0.001。

學(xué)習(xí)網(wǎng)絡(luò)的隱含層節(jié)點(diǎn)個數(shù)經(jīng)多次訓(xùn)練后確定為k1=11和k2=6,設(shè)n為輸入節(jié)點(diǎn)個數(shù)。混沌變量個數(shù)m為神經(jīng)網(wǎng)絡(luò)所有權(quán)值、閾值的總和,m=156,蟻群種群數(shù)M=30,p=0.8,Q=50。其算法訓(xùn)練誤差比較如表1所列。





從表1可以看出,傳統(tǒng)的BP算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的最小適應(yīng)度收斂十分緩慢,并且誤差較大。而混沌蟻群算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)誤差更小,精度更高,其收斂性要遠(yuǎn)遠(yuǎn)優(yōu)于傳統(tǒng)的BP算法。

表2所列是由實(shí)驗(yàn)仿真結(jié)果中分別提取出的神經(jīng)網(wǎng)絡(luò)速度辨識器的動態(tài)性能指標(biāo)。可以看出,混沌蟻群優(yōu)化的神經(jīng)網(wǎng)絡(luò)較之傳統(tǒng)BP算法的動態(tài)性能有了很大改進(jìn)。





4 結(jié)束語

本文構(gòu)造了一種基于混沌蟻群算法的BP神經(jīng)網(wǎng)絡(luò)模型,并將其應(yīng)用到直接轉(zhuǎn)矩控制系統(tǒng)中的轉(zhuǎn)速辨識器中,從而顯示出其辨識非線性函數(shù)的優(yōu)越性能以及速度快、精度高的特點(diǎn)。仿真結(jié)果表明,用混沌蟻群優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)速度辨識器是可行的,而且具有較強(qiáng)的速度跟蹤精度,可實(shí)現(xiàn)直接轉(zhuǎn)矩控制系統(tǒng)的無速度傳感器控制,而且系統(tǒng)具有良好的動、靜態(tài)性能。
本文地址:http://m.qingdxww.cn/thread-42366-1-1.html     【打印本頁】

本站部分文章為轉(zhuǎn)載或網(wǎng)友發(fā)布,目的在于傳遞和分享信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé);文章版權(quán)歸原作者及原出處所有,如涉及作品內(nèi)容、版權(quán)和其它問題,我們將根據(jù)著作權(quán)人的要求,第一時間更正或刪除。
您需要登錄后才可以發(fā)表評論 登錄 | 立即注冊

廠商推薦

  • Microchip視頻專區(qū)
  • 使用SAM-IoT Wx v2開發(fā)板演示AWS IoT Core應(yīng)用程序
  • 使用Harmony3加速TCP/IP應(yīng)用的開發(fā)培訓(xùn)教程
  • 集成高級模擬外設(shè)的PIC18F-Q71家族介紹培訓(xùn)教程
  • 探索PIC16F13145 MCU系列——快速概覽
  • 貿(mào)澤電子(Mouser)專區(qū)

相關(guān)視頻

關(guān)于我們  -  服務(wù)條款  -  使用指南  -  站點(diǎn)地圖  -  友情鏈接  -  聯(lián)系我們
電子工程網(wǎng) © 版權(quán)所有   京ICP備16069177號 | 京公網(wǎng)安備11010502021702
快速回復(fù) 返回頂部 返回列表
主站蜘蛛池模板: 日日摸夜夜添夜夜免费视 | 小黄鸭视频网站 | 成人a视频片在线观看免费 成人a视频 | 欧美亚洲视频一区 | 国产a v高清一区二区三区 | 七次郎最新首页在线视频 | 六月综合网 | 精品91麻豆免费免费国产在线 | 免费毛片在线视频 | 免费高清在线影片一区 | 欧美尺寸又黑又粗又长 | 最近中文字幕2019视频1 | 国产91高清 | 免费费看的欧亚很色大片 | 成人欧美一区二区三区视频不卡 | 久久国产精品久久国产片 | 特赦1959全集免费观看 | 久久精品国产一区二区三区不卡 | 国产精品成人免费福利 | 国内精品福利在线视频 | 爱人体147在线视频 爱情综合症泰剧在线观看全集 | 国内精品视频一区二区三区 | 亚洲高清免费观看 | 婷婷日韩| 黄色免费网站大全 | 日韩综合色 | 在线亚洲日产一区二区 | 在线免费自拍 | 亚洲精品在线免费看 | 久久久受www免费人成 | 天美传谋和果冻传媒最漂亮 | 香蕉福利 | 亚洲人成网址在线观看 | 麻豆免费永久网址入口网址 | 99国产精品九九视频免费看 | 四虎4hu亚洲精品 | 日韩在线一区高清在线 | 99久久精品免费观看区一 | 日本中文字幕不卡在线一区二区 | 人人干人人搞 | 欧美专区亚洲 |