激光切割和雕刻以其精度高、視覺(jué)效果好等特性,被廣泛運(yùn)用于廣告業(yè)和航模制造業(yè)。在大尺寸激光加工系統(tǒng)的開(kāi)發(fā)過(guò)程中,加工速度與加工精度是首先要解決的問(wèn)題。解決速度問(wèn)題的一般方法是在電機(jī)每次運(yùn)動(dòng)前、后設(shè)置加、減速區(qū),但這會(huì)使加工數(shù)據(jù)總量成倍增加。除此之外,龐大的數(shù)據(jù)計(jì)算量也需要一個(gè)專(zhuān)門(mén)的高性能處理器來(lái)實(shí)現(xiàn)。 FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列)在并行信號(hào)處理方面具有極大的優(yōu)勢(shì)。本系統(tǒng)采用FPGA作為加工數(shù)據(jù)的執(zhí)行器件。這種解決方案突出的特點(diǎn)是讓運(yùn)動(dòng)控制的處理部分以獨(dú)立的、硬件性方式展開(kāi),增加系統(tǒng)的性能和可靠性,從而有效地解決了用單純的MCU或DSP系統(tǒng)處理的帶寬限制,以及用戶(hù)系統(tǒng)軟件和運(yùn)動(dòng)控制軟件混雜性的問(wèn)題。 當(dāng)今國(guó)內(nèi)外市場(chǎng)上已經(jīng)陸續(xù)出現(xiàn)類(lèi)似的FPGA產(chǎn)品,這些產(chǎn)品大多使用FPGA完成從原始數(shù)據(jù)處理到執(zhí)行的全部工作。此種結(jié)構(gòu)雖然可以簡(jiǎn)化FPGA外部的電路設(shè)計(jì),但是由于FPGA做復(fù)雜數(shù)學(xué)計(jì)算的能力有限,不能對(duì)復(fù)雜圖形尤其是不規(guī)則圖形做出全面的分析,導(dǎo)致加工速度無(wú)法進(jìn)一步提升。除此之外,這些產(chǎn)品大多采用寫(xiě)入一條數(shù)據(jù)、執(zhí)行一條數(shù)據(jù)的工作方式,造成了執(zhí)行相鄰兩條數(shù)據(jù)間的加工停頓,破壞了加工的流暢性,在加工復(fù)雜圖形時(shí)還會(huì)明顯地影響加工速度。 本系統(tǒng)使用數(shù)字信號(hào)處理器DSP完成復(fù)雜的圖形分析計(jì)算,這樣既可以對(duì)復(fù)雜圖形做出全面的分析又不會(huì)喪失系統(tǒng)性能。除此之外,本系統(tǒng)還在FPGA內(nèi)部采用了雙存儲(chǔ)器交替加工的結(jié)構(gòu),從根本上消除了相鄰數(shù)據(jù)間的加工停頓。 1 系統(tǒng)設(shè)計(jì) 激光加工系統(tǒng)主要是以切割、雕刻等工藝完成對(duì)金屬、非金屬的加工。切割是指系統(tǒng)在控制工作頭做矢量運(yùn)動(dòng)的同時(shí),配合激光在被加工物體上切割出不同的線(xiàn)條;雕刻是指系統(tǒng)控制激光頭在一定區(qū)域內(nèi)進(jìn)行往復(fù)掃描,以類(lèi)似打印機(jī)的方式在被加工物體上刻出深淺不一的圖案。本系統(tǒng)采用由計(jì)算機(jī)獲得圖形并傳輸至下位機(jī),由下位機(jī)保存圖形并脫機(jī)加工的結(jié)構(gòu)。 圖1為系統(tǒng)的結(jié)構(gòu)示意圖。在數(shù)據(jù)傳輸階段,加工數(shù)據(jù)由計(jì)算機(jī)通過(guò)以太網(wǎng)或并口,以圖名、圖號(hào)為標(biāo)志傳入DSP(TMS320VC33),DSP將數(shù)據(jù)按協(xié)議解析后存入FLASH(K9F1G08U0A)存儲(chǔ)器。在脫機(jī)加工階段,DSP將數(shù)據(jù)從FLASH存儲(chǔ)器重新讀出并進(jìn)行處理、計(jì)算,并將最終的加工數(shù)據(jù)輸入FPGA(EP1C6T144C8)內(nèi)部的加工模塊,控制FPGA輸出加工信號(hào)。在系統(tǒng)運(yùn)轉(zhuǎn)的整個(gè)過(guò)程中,DSP還要通過(guò)建于FPGA內(nèi)部的通訊模塊和單片機(jī)交換數(shù)據(jù),獲取有關(guān)人機(jī)界面和諸如限位開(kāi)關(guān)、激光器散熱水泵等保護(hù)器件的工作狀態(tài)。 加工信號(hào)預(yù)處理電路主要由數(shù)模轉(zhuǎn)換器和光電隔離器組成。它負(fù)責(zé)將FPGA輸出的加工信號(hào)進(jìn)行處理后驅(qū)動(dòng)步進(jìn)電機(jī)和激光器。 2 DSP的軟件設(shè)計(jì) 2.1 加減速區(qū)的分析及計(jì)算 在待機(jī)階段,DSP將從計(jì)算機(jī)取得原始數(shù)據(jù)。在加工階段,DSP將對(duì)這些數(shù)據(jù)進(jìn)行分析并合理分配加、減速區(qū)域。圖2為加、減速區(qū)示意圖。加減速區(qū)是用多段幅值較小的速度變化代替一次較大的速度變化。對(duì)于大尺寸或高速運(yùn)動(dòng)平臺(tái)來(lái)說(shuō),電機(jī)的加、減速過(guò)程必不可少。由原理可知,兩圖所圍面積大小相等,即工作頭移動(dòng)距離相等。 在以往的步進(jìn)電機(jī)驅(qū)動(dòng)算法的設(shè)計(jì)中,大多采用簡(jiǎn)單的二次曲線(xiàn)進(jìn)行速度擬合。此種擬合方式雖然簡(jiǎn)單,但在大型運(yùn)動(dòng)平臺(tái)上并不能夠充分考慮到機(jī)械部件間的靜摩擦力和旋轉(zhuǎn)部件的轉(zhuǎn)動(dòng)慣量等因素,其運(yùn)行效果并不理想。 本系統(tǒng)在加、減速區(qū)的計(jì)算過(guò)程中,通過(guò)將速度和加速時(shí)間的關(guān)系與“S”形曲線(xiàn)進(jìn)行擬合來(lái)得到加速區(qū)速度,通過(guò)將速度和減速時(shí)間的關(guān)系與反“S”形曲線(xiàn)進(jìn)行擬合得到減速區(qū)速度。圖3為加、減速區(qū)速度-時(shí)間擬合曲線(xiàn),曲線(xiàn)的斜率代表工作頭移動(dòng)的加速度。從圖3可見(jiàn),加、減速區(qū)所使用的擬合曲線(xiàn)并不相同,減速區(qū)曲線(xiàn)更為“陡峭”。這是由于減速過(guò)程中受機(jī)械系統(tǒng)摩擦力等因素的影響,電機(jī)負(fù)荷較小,可以承受更快的減速過(guò)程。使用“S”形曲線(xiàn)進(jìn)行擬合的優(yōu)點(diǎn)主要有: (1)電機(jī)從靜止?fàn)顟B(tài)過(guò)渡到行進(jìn)狀態(tài)的過(guò)程中,由于各機(jī)械部件之間存在靜摩擦力,可使電機(jī)較為平緩地啟動(dòng),避免了撞擊或丟步現(xiàn)象的發(fā)生。 (2)電機(jī)進(jìn)入平穩(wěn)運(yùn)行階段時(shí),可以使用較大的加速度進(jìn)行速度提升。但是,隨著速度的增加,電機(jī)的剩余功率將不斷減小,此時(shí)應(yīng)不斷減緩加速進(jìn)程。 (3)電機(jī)從行進(jìn)狀態(tài)過(guò)渡到靜止?fàn)顟B(tài)的減速過(guò)程中,此種擬合方法可以使電機(jī)平穩(wěn)過(guò)渡,避免發(fā)生撞擊。 2.2 復(fù)雜圖形的分析 在一幅復(fù)雜圖形中往往存在很多不連續(xù)、不規(guī)則的矢量,如果每條矢量的末尾都減速到零,勢(shì)必會(huì)影響加工速度。所以,在分析此類(lèi)圖形時(shí)要連帶分析當(dāng)前矢量的前、后圖形情況,計(jì)算出各矢量的夾角以確定加工此矢量的初始速度及終止速度。表1為工作頭進(jìn)行不同角度轉(zhuǎn)彎時(shí)的極限速度。 3 FPGA的內(nèi)部邏輯設(shè)計(jì) 從DSP的角度看,F(xiàn)PGA加工模塊類(lèi)似于一個(gè)存儲(chǔ)器,DSP只需將計(jì)算結(jié)果寫(xiě)入此存儲(chǔ)器中,以后的工作將全部由FPGA來(lái)完成。在FPGA加工模塊中主要采用了不同類(lèi)別數(shù)據(jù)并行讀取和雙存儲(chǔ)器組交替工作的技術(shù)。 3.1數(shù)據(jù)并行讀取 傳統(tǒng)的數(shù)據(jù)存儲(chǔ)器受限于處理器的單任務(wù)特性,通常采用單片大容量存儲(chǔ)單元,這種結(jié)構(gòu)使得系統(tǒng)需要耗費(fèi)多個(gè)讀取周期才能得到一組完整的數(shù)據(jù)。而FPGA的并行工作特性可以突破這種傳統(tǒng)的設(shè)計(jì)形式,將不同類(lèi)別數(shù)據(jù)存放于獨(dú)立的存儲(chǔ)單元中。只要在定義數(shù)據(jù)時(shí)將地址對(duì)齊就可以在一個(gè)讀取周期中獲得全部數(shù)據(jù)。運(yùn)用這種方式可以在讀數(shù)時(shí)間最小化的同時(shí)簡(jiǎn)化編程,也可以使整體程序的結(jié)構(gòu)更加明了。 3.2 雙存儲(chǔ)器交替工作 市場(chǎng)上已有的同類(lèi)FPGA產(chǎn)品大多采用寫(xiě)入1條數(shù)據(jù)、執(zhí)行1條數(shù)據(jù)的工作方式,這將在數(shù)據(jù)傳輸時(shí)產(chǎn)生停頓。本系統(tǒng)雖然采用了存儲(chǔ)器作為加工數(shù)據(jù)的緩存,但僅僅依靠這種方式仍然不能解決問(wèn)題,在DSP寫(xiě)入數(shù)據(jù)時(shí)依然會(huì)造成加工停頓。 圖4為雙存儲(chǔ)器組結(jié)構(gòu)示意圖,當(dāng)系統(tǒng)在執(zhí)行其中一組存儲(chǔ)器中的數(shù)據(jù)時(shí),DSP可將計(jì)算結(jié)果寫(xiě)入另一組存儲(chǔ)器。由于DSP的運(yùn)算速度遠(yuǎn)遠(yuǎn)高于加工速度,所以雙存儲(chǔ)器架構(gòu)可以保證加工不被間斷。 圖5為FPGA加工程序流程圖。可見(jiàn),在地址對(duì)齊的前提下更換存儲(chǔ)器組需要改變存儲(chǔ)器組選擇信號(hào)并將地址計(jì)數(shù)器清零。此時(shí),F(xiàn)PGA還將用中斷的形式通知DSP,使得DSP可以填充新的數(shù)據(jù)。 4 實(shí)驗(yàn)結(jié)論 實(shí)驗(yàn)中使用幅面為1.2m×1m的二維工作臺(tái),X、Y軸步進(jìn)電機(jī)采用雷塞公司的57HS22并配以M860驅(qū)動(dòng)器。57HS22的步距角為1.8度,額定電流為4A,保持轉(zhuǎn)矩為2.2N.m,定位轉(zhuǎn)矩為700g.cm,電機(jī)接法采用并聯(lián)形式以突出高速性能。電機(jī)轉(zhuǎn)子的轉(zhuǎn)動(dòng)經(jīng)減速后由齒形帶帶動(dòng)工作頭做直線(xiàn)運(yùn)動(dòng),轉(zhuǎn)子每旋轉(zhuǎn)一周使工作頭移動(dòng)24mm。 在實(shí)驗(yàn)中分別對(duì)PLT文件、DXF文件以及BMP文件作了大量測(cè)試,其中PLT文件和DXF文件用于切割測(cè)試,BMP文件用于雕刻測(cè)試。 圖形文件由PC機(jī)軟件傳送至本系統(tǒng),隨后脫機(jī)加工,在切割模式下,長(zhǎng)矢量的加工速度可以平穩(wěn)超過(guò)20000mm/min,在雕刻模式下加工速度可以超過(guò)30000mm/min。在對(duì)一幅含有超過(guò)13萬(wàn)條矢量的復(fù)雜圖形連續(xù)加工5次后,無(wú)肉眼可分辨的位置偏差。 由于本系統(tǒng)采用了DSP進(jìn)行圖形分析,使得系統(tǒng)對(duì)復(fù)雜圖形的處理能力得到了很大的提高。同時(shí),F(xiàn)PGA內(nèi)部雙存儲(chǔ)器交替工作的結(jié)構(gòu)也從根本上解決了數(shù)據(jù)傳輸過(guò)程中加工停頓的問(wèn)題。實(shí)驗(yàn)表明,本系統(tǒng)擁有加工速度快、圖形處理能力強(qiáng)、使用簡(jiǎn)便可靠等優(yōu)點(diǎn)。 |