在雷達信號處理、數字圖像處理等領域中,信號處理的實時性至關重要。由于FPGA芯片在大數據量的底層算法處理上的優勢及DSP芯片在復雜算法處理上的優勢,DSP+FPGA的實時信號處理系統的應用越來越廣泛。ADI公司的TigerSHARC系列DSP芯片浮點處理性能優越,故基于這類DSP的DSP+FPGA處理系統正廣泛應用于復雜的信號處理領域。同時在這類實時處理系統中,FPGA與DSP芯片之間數據的實時通信至關重要。 TS201 DSP的外部總線接口有兩種協議:慢速協議和高速流水協議。流水線協議適合與快速同步設備連接,文中采用此協議,實現DSP與FPGA之間的通信。 1 DSP流水線協議 流水線協議用來提供流水線方式的數據傳輸。在該傳輸協議下,每個時鐘周期可以傳輸一個數據。控制流水線協議進行數據傳輸的主要信號包含以下引腳:
流水線協議數據傳輸有兩種方式:普通流水線協議和突發流水線協議。ADSP TS201的數據總線位寬可以通過SYSCON寄存器設置為32位或者64位,但是有時候需要傳輸的數據位寬可能是32位,64位或者128位,這樣就有可能出現數據總線位寬和數據位寬不一致的情況,如果總線位寬小于數據位寬,DSP采用突發流水協議傳輸,否則采用普通流水線協議。 1.1 普通流水線協議 圖1是DSP使用普通流水協議,寫FPGA內部寄存器時序圖,流水深度為1,在時鐘沿1地址線、WRx(WRH和WRL)同時有效,一個時鐘周期后,在時鐘沿2數據線有效,地址線、WRx無效。 1.2 突發流水線協議 因為數據總線位寬小于數據位寬,那么它只能通過兩次傳輸來完成。但是如果DSP沒有任何指示信號,FPGA并不知道當前傳輸是高32位數據,還是低32位數據,這時候另外一個信號BURST就顯得尤為重要了。 引腳BRST可以用來指示多個傳輸過程合成一個傳輸過程,圖2是DSP通過32位數據總線寫64位數據時序圖。 由圖2可以看出,數據傳輸機制與普通流水協議相同,只多了一個BRST指示信號,它與地址1同時有效,表示本次數據沒有傳輸完畢,下次要傳輸的數據與本次傳輸的數據是一個整體,即BRST有效時傳輸是低32位數據,無效時傳輸的是高32位數據,這樣就實現了在32位數據總線上傳輸64位數據,如果沒有BRST信號,該過程會被認為是2次32位傳輸。 同理,如果用32位數據總線傳輸128位數據,在傳輸前3個32位數據的時候,BRST信號有效,傳輸最后一個32位數據BRST無效。 注意:使用流水協議時,流水深度由傳輸類型(讀數據還是寫數據)決定。在寫數據傳輸中,流水深度固定為1;在讀數據傳輸中,流水線深度可由用戶編程決定,即由系統配置寄存器SYSCON決定,在1"4之間可變。 2 FPGA設計 由于DSP的協議是相對固定的,FPGA只需按照協議進行設計即可,下面以DSP訪問FPGA內部寄存器為例詳細介紹。筆者建議采用同步設計,主要信號、輸出信號都由時鐘沿驅動,可以有效避免毛刺。 為了使所設計的模塊通用化,可設流水深度、數據總線位寬、寄存器位寬、寄存器地址可設。筆者建議采用參數化設計,使用參數傳遞語言GENERIC將參數傳遞給實體,在實體內部使用外if…else結構,這樣在一個程序中可以包含各種情況,但不會增加邏輯的使用量。下面以個別情況為例,詳細介紹。 2.1 32位數據總線,32位寄存器,寫操作 前面提過,DSP采用流水協議寫FPGA時,流水深度固定為1,FPGA在前一時鐘沿采到地址、WRx信號有效,在下一時鐘沿就鎖存數據,如圖3所示,FPGA在時鐘沿1采到地址總線上的地址與寄存器地址一致,WRx信號為低,寫標志信號S_W_FLAG置高,由于采用同步設計,FPGA只有在時鐘沿2才能采到S_W_FLAG為高,一旦采到S_W_FLAG為高,FPGA就鎖存數據總線上的數據,即在時鐘沿2鎖存數據。 2.2 32位數據總線,32位寄存器,讀操作 與寫寄存器不一樣,讀寄存器時流水深度在1到4之間可設,需要注意的是,為避免總線沖突,DSP不讀時,FPGA數據總線應保持三態。 如果流水深度設置為1,FPGA在前一時鐘沿采到地址、RD信號有效,應確保在下一時鐘沿數據已經穩定的出現在數據總線上,否則DSP不能正確讀取數據,如圖3所示,在時鐘沿1采到地址總線上的地址與寄存器地址一致,RD信號為低,驅動數據總線,在時鐘沿2數據已穩定出現在數據總線上,DSP可以讀取。 如果流水深度設置為2,FPGA在前一時鐘沿采到地址、RD信號有效,應確保隔一時鐘周期后,數據穩定的出現在數據總線上,這樣就像寫操作一樣,需要加一個標志,當條件滿足,標志為高,一旦標志為高,輸出數據,如圖4所示。 綜上所述,流水深度加深一級,FPGA就晚一個時鐘周期驅動數據總線。可以看出,雖然流水深度在1"4之間可設,但是總能保證一個時鐘周期傳輸一個數據。 2.3 32位數據總線,64位寄存器 前面提到,突發流水協議與普通流水協議數據傳輸機制是一樣的,只是多了一個指示信號BRST,當寫操作時,FPGA如果在前一時鐘沿采到地址、WRx、BRST信號有效,在下一時鐘沿就鎖存數據到寄存器低位,而如果在前一時鐘沿采到地址、WRL有效,而BRST信號無效,在下一時鐘沿就鎖存數據到寄存器高位。同樣,當讀操作時,FPGA如果采到地址、RD、BRST信號有效,就將寄存器低位驅動到數據總線上,而如果采到地址、RD有效,BRST而信號無效,就將寄存器高位驅動到數據總線上,具體在哪個時鐘沿驅動,由流水深度決定。 3 DSP設置 ADSP TS201與FPGA通信時,DSP是否采用流水協議,數據總線位寬,以及流水深度都可以通過系統配置寄存器SYSCON進行設置,SYSCON詳細設置見文獻,以32位數據總線訪問64位寄存器為例,一級流水,SYSCON設置為 4 結束語 文中實現了DSP通過外部總線接口訪問FPGA內部寄存器,但是如果需要傳輸的數據量很大,或者DSP與FPGA的時鐘不同步,就不能用寄存器來實現,需要借助于雙口RAM或者FIFO,讀者可以在本文的基礎上加以改進。 |