溫控技術無論是在工業生產,還是日常生活中都起著非常重要的作用。在冶金、石油、化工、電力和現代農業等行業,溫度是極為重要而又普遍的熱工參數之一,在普通家庭里熱水器、電飯煲、電烤箱等依賴于溫控技術的家電設備也是必不可少。可以說溫度控制技術無處不在。 常規的溫度控制方法以設定溫度為臨界點,超出設定允許范圍即進行溫度調控:低于設定值就加熱,反之就停止或降溫。這種方法實現簡單、成本低,但控制效果不理想,控制溫度精度不高、容易引起震蕩,達到穩定點的時間也長,因此,只能用在精度要求不高的場合。 而采用PID算法進行溫度控制,它具有控制精度高,能夠克服容量滯后的特點,特別適用于負荷變化大、容量滯后較大、控制品質要求又很高的控制系統。 單片機作為控制系統中必不可少的部分,在各個領域得到了廣泛的應用,用單片機進行實時系統數據處理和控制,保證系統工作在最佳狀態,提高系統的控制精度,有利于提高系統的工作效率。本系統采用單片機編程實現PID算法進行溫度控制。 1 PID控制的原理和特點 在工程實際中,應用最為廣泛的調節器控制規律為比例、積分、微分控制,簡稱PID控制,又稱PID調節。PID控制器以其結構簡單、穩定性好、工作可靠、調整方便而成為工業控制的主要技術之一。當被控對象的結構和參數不能完全掌握,或得不到精確的數學模型,控制理論的其他技術也難以采用,系統控制器的結構和參數必須依靠經驗和現場調試來確定時,應用PID控制技術最為方便。 PID控制器的參數整定是控制系統設計的核心內容。它是根據被控過程的特性確定PID控制器的比例系數、積分時問和微分時間的大小。PID控制器參數整定的方法概括起來有兩大類:一是理論計算整定法。它主要是依據系統的數學模型,經過理論計算確定控制器參數。這種方法所得到的計算數據未必可以直接用,還必須通過工程實際進行調整和修改。二是工程整定方法,它主要依賴工程經驗,直接在控制系統的試驗中進行,且方法簡單、易于掌握,在工程實際中被廣泛采用。 PID一般算式及模擬控制規律如式(1)所示: 式中:u(t)為控制器的輸出;e(t)為偏差,即設定值與反饋值之差;KC為控制器的放大系數,即比例增益;TI為控制器的積分常數;TD為控制器的微分時間常數。PID算法的原理即調節KC,TI,TD三個參數使系統達到穩定。 由于計算機控制是一種采樣控制,它只能根據采樣時刻的偏差值計算控制量。因此在計算機控制系統中,必須首先對式(1)進行離散化處理,用數字形式的差分方程代替連續系統的微分方程,此時積分項和微分項可用求和及增量式表示: 將式(2)和式(3)代入式(1),則可得到離散的PID表達式: 式中:△t=T為采樣周期,必須使T足夠小,才能保證系統有一定的精度(采樣定理);E(K)為第K次采樣時的偏差值;E(K-1)為第K-1次采樣時的偏差值;P(K)為第K次采樣是調節器的輸出。 2 系統的硬件構成 本系統由傳感器A/D采樣輸入、單片機控制、人機交互、控制信號輸出四部分組成,其中溫度傳感部分由測試采樣電路實現,人機交互由矩陣鍵盤和LCD液晶屏構成,PID控制算法由89C52單片機實現,控制信號輸出部分則由功率放大和開關控制電路組成。系統框圖如圖1所示。 3 主程序流程 軟件程序是本控制系統的核心,它包括從溫度采樣到信號輸出的整個流程控制,其示意圖如圖2所示。 程序功能主要由以下的幾部分組成: (1)初始化:設定各參數的初始值,設定各中斷及定時器。 (2)接收/發射:此部分程序主要完成數據的控制及顯示,主要通過89C52單片機的全雙工串行口完成和鍵盤部分的雙向通信。 (3)PC機通信:此部分完成與微機控制接口RS 232的連接及通信的控制。 (4)數值轉換子程序:由于主程序中用到了很多的數值轉換及數值的運算(如十進制轉換成十六進制、雙字節與單字節的除法運算等),為了程序調用的方便,特將其編寫成子程序的形式。 (5)PID算法。 4 實驗測試 系統的性能與穩定度需要通過具體實驗測試完成。現用1 kW的電爐將電熱杯中的1 L清水進行加熱。 觀測設定值和實測值之間的誤差(當水溫達到穩定時的值),計算絕對誤差和相對誤差,見表1。 設定溫度為50℃,每隔30 s記錄實測溫度,如表2所示。 從表2中的數據可知,系統運行5 min時基本達到穩定。 5 結 語 由實驗結果可以看出,系統的誤差基本穩定在±0.3℃,可見系統的精度很好。此外,系統運行5 min時溫度基本達到穩定,穩定所需時間較短。可以看出,基于PID算法的單片機溫度控制系統具有較高的精確度和穩定性,在溫度調節階段平衡溫度時間較短。因此本系統可以應用于各種對精度要求較高的溫度控制場合。 |