電源電壓逐步下降,晶體管的閾值電壓并沒有減小,但是運放的共模輸入范圍越來越小,這使設計出符合低壓低功耗要求,輸入動態幅度達到全擺幅的運放成為一種必須。本文所設計的具有軌至軌(R-R)輸入功能的低壓低功耗CMOS運算放大電路,在各種共模輸入電平下有著幾乎恒定的跨導,使頻率補償更容易實現,適合應用于VLSI庫單元及其相關技術領域。 理論模型 基本的軌至軌輸入結構 在較低的電源電壓下,運算放大器的輸 入級設計是非常重要的。傳統的PMOS差動輸入級的共模輸入電壓范圍 VCM可表示為: (1) 式中,VSS為負電源電壓, VCM為共模輸入電壓,VDsat為源漏飽和壓降,VGSP為PMOS的柵源電壓。同理,NMOS差動輸入級的共模輸入電壓范圍可表示為: (2) 式中,VGSN為NMOS的柵源電壓。如果將PMOS和NMOS差分對互補連接使用,就可以使運放的輸入共模范圍變為: (3) 從而實現了軌至軌的共模輸入。圖1為軌至軌輸入結構的電路示意圖。 圖1 基本軌至軌輸入電路圖2 低壓低功耗運算放大器電路 跨導恒定結構 圖1所示的軌至軌輸入級電路采用互補折疊式結構,使共模輸入電壓可以在整個從地到電源電壓的范圍內工作,如果輸入級工作在飽和區,電路的跨導由下面的公式確定: 或者 (4) 式中mn和mp分別代表NMOS和PMOS的遷移率。從上面的公式可以看出,輸入級的跨導會隨柵源電壓和便置電流的變化而變化。因此,當共模輸入電平從VDD到VSS變 化時,軌至軌輸入差分對的跨導從PMOS差分對的跨導變化到PMOS +NMOS差分對的跨導之和,再變化到NMOS差分對的跨導。中間部分跨導gm幾乎是其它部分的一倍,這種跨導的變化會使運放的增益誤差發生變化,從而使頻率特性變差,因此,需要設計一種電路,使軌至軌輸入電路具有恒定的跨導。 目前,可保證R-R輸入級的gm恒定不變的設計方法主要有以下幾種:1. 采用雙極(BJT)線性互補差分對形式的輸入級。 2. 由齊納二極管將P、N差分對的偏置電流連起來實現。 3. 采用冗余的差分對來實現。4. 用電流鏡技術,使偏置電流的大小隨輸入共模電壓的變化而變化。 上述第4種方法的電路不僅結構簡單,而且對gm的控制也易于實現。因此,本文運用了對輸入跨導的控制原理,采用了一種 全新的保持R-R輸入級gm為常數的電路結構。 電路設計 本文所設計的電路如圖2所示,該電路由輸入互補差分對、恒定gm電路、共源共柵求和電路組成。M1"M4構成了輸入互補差分對。當低共模輸入時,P輸入差分對M1、M4處于工作狀態,N輸入差分對M2、M3截止,開關管M17 、M18開啟,抽取M16上的電流;M13、M14截止。M15的電流全部流入P差分對,則此區間的等效差分跨導為: (5) 當共模輸入電壓在中間值附近時, P差分對M1、M4與N差分對M2、M3均導通,控制開關M17、M18、M13、M14開啟,分別調節它們的柵電壓,使其從M15、M16均抽取3/4的電流,則此區間的等效差分跨導為: (6) 當在高共模輸入區時,N差分對M2、M3工作,P差分對M1、M4截止。開關管M13、M14開啟,抽取M15上的電流,開關管M17、M18截止,M16的電流全部流入N差分對,則此區間的等效差分跨導為: (7) 從上面的分析可知,只要合理選擇四個輸入管子的長寬比,滿足如下關系: (8) gm就會保持恒定。 M5"M12為共源共柵求和電路。這種結構的輸出阻抗和電壓增益比較高,并且有很好的頻率特性和電源抑制比。經過分析可知,該電路結構在互補差分對交替工作的時候,當M1,M4與M2、M3不能同時處于飽和狀態時,引起求和電路M5"M12的靜態電流發生變化,使電路的輸出電阻和極點發生少許改變,從而可能會在過渡區出現大跨導尖峰,但是,由于這個過渡區很窄,估計這種大的尖峰不會出現,在整個共模范圍內,輸入跨導基本保持恒定。 圖3 運放的跨導仿真結果 仿真結果 本文采用TSMC公司的0.35mm工藝器件的HSpice參數模型進行仿真,得到下面的結果。圖3是運放的總跨導,從圖中可以看出,當共模輸入電壓從0V到2V變化時,整個跨導在5%以內變化,跨導在中部的變化正如上面所述,是由于 差動對交替工作時,靜態電流的變化所引起的。 結語 本文所設計的運算放大器具有2V的電源電壓,150mW的功耗和75°的相位裕度,在整個共模范圍內,輸入級的跨導基本保持恒定,提高了運放的性能指數。且結構簡單,特別適合作為VLSI的庫單元。 |