本文討論多路輸入多路輸出(MIMO)技術在先進3G(HSPA++、LTE和IMT-advanced)移動應用中的實現挑戰與解決方案。借助增強的頻譜效率,MIMO能夠保證實現更高的數據速率,并通過將電子信息嵌入到空間處理單元來提高無線系統的性能。空間處理包括在發射機上進行空間預編碼和在接收機上進行空間后編碼,從信息信號處理理論角度講,它們彼此之間進行的是雙重處理。MIMO 技術與OFDM(正交頻分多路復用)相結合可以充分利用無線信道空間分集和多徑的特征,實現先進的 3G 寬帶無線通信和高頻譜利用率。![]() ![]() ![]() 在一個密集的多徑散射環境中,MIMO 系統可充分利用通過空間分隔的天線獲得空間分集。MIMO系統能夠通過許多不同方法來實施,以獲得抵抗信號衰落的分集增益或者容量增益。通常,MIMO技術具有三種類型。第一類旨在通過最大化空間分集提高功率效率。此類技術包括延遲分集、空時分組編碼(STBC)和空時網格碼(STTC)。第二類利用豐富的散射環境中的空間復用,通過天線傳輸相互獨立的數據信號,以提高數據速率,但通常不能夠達到完整的空間分集。第三類利用的是發射機的信道信息,又稱為波束賦形。它利用信道信息建立波束賦形矩陣,作為發射機和接收機的前置濾波器和后置濾波器的,以實現容量增益。 空間分集 無線信道中信號功率的波動非�?焖�。信號功率顯著下降時,信道處于衰落狀態。分集用于在無線信道中抵抗衰落。接收天線分集可在 SIMO通道中使用。接收天線接收同一信號獨立的衰落狀態,并與這些信號相結合,使得合成信號的幅度變化小于任一天線的信號。通常使用獨立衰落信道數來描述分集的特征,這一數目也稱為“分集階數”,并且如果同一發射天線針對所有接收天線的信道具有獨立的衰落特性,則分集與 SIMO信道中接收天線的數量相等。發射分集適用于 MISO信道并且已經成為備受關注的研究領域。提取分集需要適當的設計發射信號。在接收機上使用合適的組合方案,以獲得分集增益。如果所有發射天線到同一接收天線的信道具有獨立的衰落特性,則該信道的分集與發射天線的數量相等。 ![]() 空間復用 空間復用可以為相同帶寬的信號提供線性增長的傳輸速率,而且不會造成額外的功率損耗。 波束賦形 在空間分集和空間復用中,通常認為發射機不了解信道信息。當發射機具備信道信息時,可改善系統性能。信道信息可以是完整的也可以是部分的。完整的信道信息意味著發射機已知信道矩陣。部分信息可能指的是瞬時信道的某些參數(例如矩陣信道的條件數)或統計特性(例如發射或接收的相關特性)。圖 4顯示了使用信道信息的預編碼框架。發射信號(S0,S1)與預編碼相乘,這可以解釋為波束賦形。經過預編碼之后,兩個分離的數據流可從兩個發射天線同時發送,作為空間復用,但是矩陣編碼器將根據信道信息發生變化。假設發射機已經知道發射相關矩陣,則可以使用相關矩陣的特征矩陣建立預編碼矩陣,以優化遍歷容量。將 2 X 2 預編碼矩陣表示為 W,則符碼周期 t1 內的發射符碼為: 對于無線通信系統來說,信道是關鍵因素,它決定系統的性能。例如,通過損耗和衰落可導致信號幅度衰減,多徑可導致符碼間干擾。雖然 MIMO開辟了一個新維度空間可以極大地提高性能,但是分集或容量增益是否能夠真正實現依賴于信道特性。在 STBC應用中,是否能夠達到分集增益取決于信道分集階數。只有當每個發射接收天線對之間具有獨立衰落通道時,信道分集階數才等于發射和接收天線的數量。這意味著如果發射接收天線對之間的信道具有高相關特性,則可以獲得的分集增益將非常有限。空間復用應用還要求信道獨立特性。只有在最佳信道條件下,不同的空間信號流才能夠被很好地分離,這就是說發射接收天線對之間的信道具有低相關特性。 MIMO 性能測試中的挑戰 隨著 MIMO系統發射機/接收機單元的增加,產品設計和開發的復雜程度也在迅速增加,這也給 MIMO 性能測試帶來了挑戰。如上所述,MIMO的性能取決于信道,為了研究不同信道條件下的接收機性能,必須使用 MIMO信道。在早期設計和驗證周期內,直接在真實的無線信道環境中進行測試并不是一種有效方法。這非常耗時,由于信道敏感和多變,重復生成研究問題是非常困難的。使用軟件生成信道系數是另一種選擇,但也并非理想方法。因為發射信號的系數生成和卷積運算過程是極為耗時和占用資源的,所以只使用軟件來仿真信道行為在實時測試中是不可行的。另外,信道模型變得越來越復雜,不同的通信標準要求使用不同的信道模型和測試環境。重復生成所有這些信道模型和測試環境將加重設計工程師的負擔,而且耗時的測試將減緩故障診斷過程和開發周期。因此,專業的 MIMO 信道仿真器是這些工程師加快工作進程的關鍵工具。 MIMO信道仿真器使用功能強大的數字信號處理技術可以重復生成設定的、真實的信道環境,這使工程師能夠在早期部署和設計驗證階段隔離性能問題,并為元器件或系統的全面故障診斷提供最快速的方法。目前的 SISO 信道仿真器無法有效地解決 MIMO性能測試問題。首先,每臺接收機需要對不同發射機的信號流進行求和運算;第二,多級并聯 SISO 信道仿真器無法仿真不同信道的相關特性,而這是MIMO 信道的一個重要特點;第三,滿足所需的信道數量要求對于 SISO 信道仿真器來說是一個巨大的挑戰。 可仿真真實MIMO 信道的專業儀器為應對這些復雜的測試條件提供了最佳解決方案。信道仿真器(例如 N5106A PXB MIMO接收機測試儀)使用功能強大的數字處理技術可以重復生成真實的 MIMO條件,從而能夠在設計、部署和驗證周期早期快速隔離性能問題。信道仿真器還具有一個優勢,它可以生成真實的衰落環境,包括路徑和信道相關性,具有更低的實施成本和更快的校準流程。 圖 5. Agilent N5106A MIMO 接收機測試儀可提供多達 4個基帶發生器和 8 個衰落器,這有助于對高達 4x2 MIMO 的系統進行測試和故障診斷。Agilent Signal Studio信號生成軟件在該測試儀上運行,并為工程師提供最新的標準一致性信號生成功能。 本文概述了先進的3G無線通信系統中的 MIMO 技術,介紹了空間分集、空間復用和波束賦形的基本概念以及它們對 MIMO性能的影響。在用于豐富的多徑環境時,MIMO 技術具有提高信號的強健性和擴充容量的潛力。開發和測試 MIMO元器件和系統要求使用能夠輕松配置的先進信道仿真工具,并為真實的無線信道和條件提供精確表征。本文還與讀者分享了如何使用市場上有售的儀器(例如Agilent N5106A PXB MIMO 接收機測試儀)來仿真這些復雜信道。 |