利用分集接收機構(gòu)建通信系統(tǒng)會帶來較高的器件數(shù)目、功耗、板級空間占用以及信號布線。為了降低RF組件數(shù)量,可以使用正交解調(diào)器的直接轉(zhuǎn)換架構(gòu)。I/Q 的不匹配會使得構(gòu)建高性能接收器較為困難。這種架構(gòu)要求在 RF 輸入和占用大量板級空間的基帶數(shù)字輸出之間安裝一些組件。超外差接收機只需要一個ADC,而正交解調(diào)器則需要一個雙通道 ADC 來處理現(xiàn)實及鏡像模擬。對于單載波系統(tǒng)而言,這種情況或許是可以接受的;但是分集和直接轉(zhuǎn)換接收機可以有效地用于多通道系統(tǒng)嗎? 為什么選擇分集接收機 在通信系統(tǒng)中,設置接收機規(guī)范是為了適應小接收輸入功率。諸如蜂窩收發(fā)器基站 (BTS) 的系統(tǒng)可接收來自手機的信號,而發(fā)射信號的手機可能處在一些極大衰減信號的環(huán)境中,例如:車庫、多層建筑或擁擠的市區(qū)。手機發(fā)射的信號會從許多不同反射路徑多次到達BTS。僅使用一個天線和接收機,相同信號的許多版本便會出現(xiàn)在接收天線上,每個版本的信號都具有不同的相位和幅值。瞬時相位關系使得信號建設性地或破壞性地增加。例如,移動電話中,移動發(fā)送器并非完全固定在某一個空間位置,因此天線上的累積不斷變化。這種現(xiàn)象被稱為快速衰落,其會導致信號的漏接收。 使用分集天線可增加搜索到具有足夠接收強度信號的機率,因為這種天線為物理隔離式天線。一根天線可能正受到破壞性的干擾,而其他天線則可能不會。這就是分集天線。 為了對信號進行解調(diào),我們利用解調(diào)信號要求的最小信噪比 (SNR) 構(gòu)建了通信鏈路。分集接收機考慮到了信號在最小 SNR 以上到達 BTS 的最高概率。要想構(gòu)建一個分集接收機,至少需要為每一個通道多添加一條接收路徑。這可能會使電子產(chǎn)品和天線的成本翻一倍。但是,如果它擴展了 BTS 的接收距離并提高了接收質(zhì)量,那么這種成本代價還是值得的。它可以減少所需基站的數(shù)量,從而降低整個網(wǎng)絡的基本建設成本。 為什么選擇 ZIF 零中頻 (ZIF) 接收機可完成從射頻到基帶的直接轉(zhuǎn)換,您在超外差接收機上找不到中頻 (IF)。其優(yōu)點是最小化的 RF 組件數(shù)量、更容易濾波以及更低的采樣速率。使用分集接收機,所需組件增加了一倍,增加了組件成本、板級空間以及功耗。ZIF 接收機所需組件更少,降低了功耗,節(jié)省了 RF 部分的板級空間。 為什么選擇集成正交接收機 拋開一些獨立組件來構(gòu)建 ZIF 接收機較為困難,并且會占用相當多的板級空間。信號被轉(zhuǎn)換為正交后,在混頻器輸出和雙通道 ADC輸入之間有兩條基帶模擬路徑,包括分立增益放大器和濾波器。沿現(xiàn)實及鏡像信號路徑分布的組件之間增益和相位的不匹配會形成帶內(nèi)噪聲,因為理想復雜運算中去除的一些鏡像現(xiàn)在又如相關信號一樣出現(xiàn)在相同位置上。帶內(nèi)低級鏡像降低了帶內(nèi) SNR 和誤差矢量幅度 (EVM),從而帶來通信通道的高誤碼率(BER)。 但是,高度集成的 ZIF 接收機(例如:TI 推出的 TRF3710)可以解決最小化路徑不匹配問題。I和Q模擬路徑現(xiàn)在均位于同一顆芯片上。這些路徑會得到非常好的匹配,因為它們之間幾乎不存在工藝、溫度或電壓差異。該器件包含了一個復雜的混頻器、一個 24dB 可編程增益放大器 (PGA)、一個可編程8階低通抗混淆 ADC 輸入濾波器,以及一個直接連至雙通道 ADC 的驅(qū)動放大器。此外,它還包含了一個 DC 偏移校正模塊,對于最小化模擬輸出的 DC 偏移分量極為有用。集成所有這些必需功能后,對于用戶而言,ZIF架構(gòu)變得簡單。I和Q路徑得到了匹配,同時保持了較好的 EVM。通過將信號鏈的大部分集成到一個小封裝中,便可以在不犧牲板級空間或性能的情況下使用分集接收路徑。 為什么選擇8通道 ADC 就使用分集的雙通道 ZIF 接收機而言,需要使用8個 ADC(請參見圖 1)。如果使用了四個 12 位雙通道 ADC,每條通道都有并行數(shù)據(jù)輸出,且差不多會有 100 條數(shù)據(jù)線路需要布線,并被連接至現(xiàn)場可編程門陣列 (FPGA)。此外,還需要為 ADC 安排4個時鐘。單是從封裝角度來說,4個9×9mm、12 位雙通道 ADC 就要占用 320mm2以上的板級空間。另外,約100條數(shù)據(jù)線路的布線輕易就會使所需板級空間增加1倍,同時在 FPGA 上也要求相同數(shù)量的數(shù)據(jù)輸入。很明顯,推薦使用一個8通道 ADC,那么采用單個封裝的8個 ADC 的功耗和數(shù)據(jù)線路又如何呢? 圖1 雙通道分集ZIF接收機 利用 TI 的新型 ADC(ADS5282),許多這些問題便可迎刃而解。在每個通道 75mW、9×9mm封裝中,低功耗選項僅占用 81mm2,也即4個雙通道 ADC 板級空間的1/4。更為重要的是,利用串行LVDS數(shù)據(jù)接口后,每個 ADC 通道只需一個 LVDS 對。增加一個 LVDS 幀和位時鐘并利用 20 條物理線路(10 個LVDS 對)便可以在 FPGA 中對8個 ADC 的數(shù)據(jù)進行處理,并占用最少的板級空間。 1/f 噪聲出現(xiàn)在基帶上,其常見于針對 CMOS 低功耗而設計的 ADC 中。這就限制了基帶上(即 ZIF 架構(gòu)要使用 ADC 的地方)的有效 SNR。ADC 具有一個抑制基帶 1/f 噪聲的可選模式(請參見圖 2)。 圖2 請注意,一旦該模式被激活 1/f 噪聲(基帶附近)便被轉(zhuǎn)換為奈奎斯特,并且兩種情況下均可看到 0~1 MHz 的SNR 該 ADC還在每條通道內(nèi)提供了兩倍抽取功能,以消除移頻1/f噪聲(仍然出現(xiàn)在 Fclk/2 附近),通過處理增益改善帶內(nèi)SNR,并且降低高速串行LVDS 數(shù)據(jù)速率。所用數(shù)字濾波器保持少量的抽頭,以達到節(jié)能的目的。這樣,使用抽取濾波器時處理增益約為 2dB。通過使用抽取功能來降低LVDS 速率后,可考慮使用更低成本的 FPGA 選項,同時在 ADC 和 FPGA 之間擁有更為輕松的時間預算。 結(jié)語 滿足蜂窩網(wǎng)絡規(guī)范要求的BTS并不是一項全新的成果。大多數(shù)新型 BTS 設計的主要目標都是想通過降低BTS構(gòu)建成本或減少 BTS 構(gòu)建數(shù)量來降低運營商的成本。其中,射頻成本只是構(gòu)建蜂窩基站總成本的一部分,因此如果它們可減少構(gòu)建基站的數(shù)量,那么就應該對射頻接收機設計進行改進。通過構(gòu)建更為靈敏的射頻設備,覆蓋相同區(qū)域所需的基站數(shù)量更少。運用具有高度集成的 ZIF 接收機和一個8通道 ADC 的分集接收機使可實現(xiàn)一個更少空間占用、更低成本和更少組件數(shù)量的高性能系統(tǒng)。 |