電子鼻是利用氣體傳感器陣列的響應圖案來識別氣味的電子系統,它可以在幾小時、幾天甚至數月的時間內連續地、實時地監測特定位置的氣味狀況。 電子鼻主要由氣味取樣操作器、氣體傳感器陣列和信號處理系統三種功能器件組成。電子鼻識別氣味的主要機理是在陣列中的每個傳感器對被測氣體都有不同的靈敏度,例如,一號氣體可在某個傳感器上產生高響應,而對其他傳感器則是低響應,同樣,二號氣體產生高響應的傳感器對一號氣體則不敏感,歸根結底,整個傳感器陣列對不同氣體的響應圖案是不同的,正是這種區別,才使系統能根據傳感器的響應圖案來識別氣味。 電子鼻的類型很多,其典型的工作程式是:首先,利用真空泵把空氣取樣吸取至裝有電子傳感器陣列的小容器室中。接著,取樣操作單元把已初始化的傳感器陣列暴露到氣味體中,當揮發性化合物(VOC)與傳感器活性材料表面相接觸時,就產生瞬時響應。這種響應被記錄并傳送到信號處理單元進行分析,與數據庫中存儲的大量VOC圖案進行比較、鑒別,以確定氣味類型。最后,要用酒精蒸氣“沖洗”傳感器活性材料表面以去除測畢的氣味混合物。在進入下一輪新的測量之前,傳感器仍要再次實行初始化(即工作之間,每個傳感器都需用干燥氣或某些其它參考氣體進行清洗,以達到基準狀態)。被測氣味作用的時間稱為傳感器陣列的“響應時間”,清除過程和參考氣體作用的初始化過程所花的時間稱為“恢復時間”。 在電子鼻系統中,氣體傳感器陣列是關鍵因素。除基本的氣相色譜(GC)分析法以外,電子鼻傳感器的主要類型還有導電型傳感器、壓電類傳感器、場效應傳感器、光纖傳感器等。 導電性傳感器的基本特點是,其置于揮發性化合物(VOC)時的響應形式是電阻值發生變化。導電性傳感器又分為金屬氧化物傳感器和聚合物傳感器兩大類。金屬氧化物傳感器在電子鼻系統中應用更廣泛,其結構如圖1所示。此類傳感器中與VOC相接觸的活性材料是錫、鋅、鈦、鎢或銥的氧化物,襯底材料一般是硅、玻璃、塑料,發生接觸反應需滿足200~400℃的溫度條件,因此在底部設置了加熱器。氧化物材料中用鉑、鈀等貴重金屬攙雜形成兩條金屬接觸電極。與VOC的相互作用改變了活性材料的導電性,使兩電極之間的電阻發生變化,這種電阻變化可用單臂電橋或其它電路來測量。事實上,一個傳感器的活性材料總是設計得對某些特定氣味響應最靈敏。 該傳感器的靈敏度范圍為5~50ppm。金屬氧化物傳感器的缺點是:(1)工作溫度較高;(2)經長時間工作之后,響應基準值易發生漂移,需要利用信號處理運算來克服;(3)對氣體混合物中出現的硫化物呈“中毒”反應。但是,它有很寬的適用范圍和相對低的成本,故依然成為當今廣泛應用的氣體傳感器。 導電聚合物傳感器中,與VOC接觸的活性材料一般是用噻吩、吲哚、呋喃等成分構成的導電聚合物,當氣體分子與上述聚合物材料接觸時會發生電離或共價作用,這種相互作用影響了電子沿聚合物鏈的傳輸,即改變了導電性。在聚合物材料中,利用顯微組構技術形成兩條間隔10~20μm的電極,通過在兩電極之間施加交變電壓來使聚合物電聚合化,改變電壓掃描速率,并應用一系列聚合物前體就可產生各種各樣的活性材料,使不同的材料分別對不同的氣體呈特定響應。導電聚合物傳感器在一般環境溫度下工作而無需加熱,因此更容易制造,其電子界面更為直接,從而在便攜式儀器應用中有更大優勢。這種傳感器探測氣味的靈敏度可達到0.1ppm,比金屬氧化物傳感器更高,但一般在10~100ppm范圍之內。目前導電聚合物傳感器的主要缺陷是:(1)活性材料電聚合過程較為困難和費時;(2)與VOC接觸響應存在隨時間發生飄移的現象;(3)對濕度極為敏感,這種敏感性易掩蓋和干擾對VOC的正常響應。另外,某些氣體會穿透聚合物材料整體,從而減慢了將VOC從聚合物中去除的過程,即延緩了傳感器的恢復時間。 壓電類傳感器的基本特點是,與VOC的接觸響應形式體現為頻率的變化。它又分為石英晶體微量天平(QCM)傳感器和聲表面波(SAW)傳感器兩種。壓電類傳感器既可以測量溫度和質量的變化,又可測量壓力、力和加速度等參數,但在電子鼻系統中,它們一般只作為質變量傳感探測器使用。QCM傳感器是一個幾毫米直徑的諧振盤,盤面敷有聚合物材料,每面有一個與導線相連的金屬電極,結構如圖2所示。當該傳感器受振蕩信號激勵時,便諧振于特征頻率(10Hz~30MHz),而一旦氣體分子被吸收到聚合物涂層表面,就增加了該盤的質量,因此降低了諧振頻率,諧振頻率的高低與所吸收的氣體分子質量成反比。QCM傳感器對不同氣體的響應、選擇性可通過調整諧振盤聚合物涂層來改變,而減小石英晶體的尺寸和質量,并減小聚合物涂層的厚度,則可進一步縮短傳感器的響應時間和恢復時間。 聲表面波(SAW)傳感器與QCM傳感器的主要區別為:(1)瑞利波是經SAW的表面運行,不是像QCM一樣通過其體內;(2)SAW傳感器工作頻率更高,因此可產生更大的頻率變化。QCM的典型工作頻率僅是10MHz,而SAW器件則在幾百MHz;(4)由于SAW是平面器件,所以可用微電子工業普遍采用的光刻技術來制造,而不像QCM那樣需要微電子機械系統(MEMS)進行三維處理,因此批量生產的成本更低。但是,SAW傳感器的信噪比遜于QCM傳感器,因此在許多情況下,前者的靈敏度要低于后者。 電子鼻傳感器的第三大類是金屬氧化硅場效應管傳感器(MOSFET)。其工作原理是:VOC與催化金屬材料相接觸所生成的反應產物(如氫)會擴散通過MOSFET的控制極來改變器件的導電物性。如圖3所示,典型的MOSFET結構有一個P型襯底和在襯底上擴散的兩個摻雜濃度很高的N型區,兩個N區的金屬觸點分別稱為源極和漏極。器件的靈敏度和選擇性可通過改變金屬接觸劑的類型和厚度以及改變工作溫度來改變。MOSFET的優點之一是可依托IC制造工藝,批量生產、質量穩定,主要問題是接觸反應產物(如氫)必須滲入催化金屬涂層來影響溝道中的電荷,這就對芯片的密閉封裝方式提出了更苛刻的要求。MOSFET與導電性傳感器一樣,也存在基準值漂移問題。 第四類實用的氣味傳感器是光纖傳感器。它對氣體化合物的響應形式是光譜色彩發生變化。如圖4所示,這種傳感器的主干部分是玻璃纖維,在玻璃纖維的各面敷有很薄的化學活性材料涂層。化學活性材料涂層是固定在有機聚合物矩陣中的熒光染料,當與VOC接觸時,來自外部光源的單頻或窄頻帶光脈沖沿光纖傳播并激勵活性材料,使其與VOC相互作用反應。這種反應改變了染料的極性,從而改變了熒光發射光譜。只要對許多敷有不同染料混合物的光纖器件構成的傳感器陣列產生的光譜變化進行檢測分析,就可以確定對應的氣體化合物成分。光纖傳感器有很強的抗噪能力和極高的靈敏度,其靈敏度單位以ppb(十億分率)計,這是其它電子鼻傳感器類型所遠不及的。目前光纖傳感器的主要缺點是:(1)其設備控制系統較復雜,成本較高,(2)熒光染料受白光化作用影響,使用壽命有限。 |