本文介紹了上下拉電阻的作用、使用方法等問題。 重要信號線的上下拉問題 一般說來,不光是重要的信號線,只要信號在一段時間內可能出于無驅動狀態,就需要處理。 比如說,一個CMOS門的輸入端阻抗很高,沒有處理,在懸空狀況下很容易撿拾到干擾,如果能量足夠甚至會導致擊穿或者閂鎖,導致器件失效。祈禱輸入的保護二極管安全工作吧。如果電平一直處于中間態,那輸出就可能是不確定的情況,也可能是上下MOS都導通,對器件壽命造成影響。 總線上當所有的器件都處于高阻態時也容易有干擾出現。因為這時讀寫控制線處于無效狀態,所以不一定會引起問題。你如果覺得自己能夠接受的話也就將就了。但是這時你就要注意到,控制線不能懸空,不然…… TTL電路的輸入端是一個發射極開路引出的結構,拉高或者不接都是高電平,但是強烈建議不要懸空不接。 上拉還是下拉?要看需要。一方面器件可能又要求,另一方面,比如總線上兩個器件,使能控制都是高有效,那么最好下拉,否則當控制信號沒有建立的時候就會出現兩個沖突,可能燒片。如果計算機總線上面掛了一個D/A,上電復位信號要對它清零或者預置,那么總線可以上下拉到你需要的數字。 至于上下拉電阻的大小,這個情況就比較多了。CMOS輸入的阻抗很高,上下拉電阻阻值可以大一些,一般低功耗電路的阻值取得都比較大,但是抗干擾能力相應比較弱一些。 很多場合下拉電阻取值比上拉電阻要小,這個是歷史遺留問題。如上面所說,TTL電路上拉時輸入3集管基射反偏,沒有什么電流,但是下拉時要能夠使得輸入晶體管工作,這個在TTL的手冊中可以查到。 也是為了這個歷史遺留問題,有些CMOS器件內部采用了上拉,這時它會告訴你可以不處理這些管腳,但是這時你就要注意了,因為下拉再用10K可能不好使,因為也許內置的20K電阻和外置的10K把電平固定在了1V左右。 有時候你會看到150歐姆或者50歐姆左右的上下拉電阻,尤其是在高速電路中會看到。 150歐姆電阻下拉一般在PECL邏輯中出現。PECL邏輯輸出級是設計開路的電壓跟隨器,需要你用電阻來建立電壓。 50歐姆的電阻在TTL電路中用的不多,因為靜態功耗實在是比較大。在CML電路和PECL電路中兼起到了端接和偏置的作用。 CML電路輸出級是一對集電極開路的三極管,需要一個上拉電阻來建立電平。這個電阻可以放在發送端,那么接受端還需要端接處理,也可以放到接受端,這時候端接電阻和偏置電阻就是一個。PECL電路結構上就好像CML后面跟了一個射極跟隨器。 OC門也使用上拉電阻,這個和CML有一點相像,但是還不太一樣。CML和PECL電路中三極管工作在線形區,而普通門電路和OC/OD門工作在飽和區。OC/OD門電路常用作電平轉換或者驅動,但是其工作速度不會太快。 為什么?在OC/OD門中,上拉電阻不能太小,否則功耗會很大。而一般門的負載呈現出一個電容,負載越多,電容越大。當由高到低跳變時,電容的放電通過輸出端下拉的MOS或者Bipolar管驅動,速度一般還是比較快的,但是由低到高跳變的時候,就需要通過上拉電阻來完成,R大了幾十甚至上百倍,假設C不變,時間常數相應增加同樣的倍數。這個在示波器上也可以明顯的看出:上升時間比下降時間慢了很多。其實一般門電路上拉比下拉的驅動能力都會差一些,這個現象都存在,只不過不太明顯罷了? (為什么會這樣?動動腦筋。想一想輸出電平的變化會對輸出級器件的工作點造成什么樣的影響。) 在總線的上下拉電阻設計中,你就要考慮同樣的問題了:總線上往往負載很重,如果你要電阻來提供一些值,你就必須保證電容能通過電阻在一定時間內放電到可接受的范圍。如果電阻太大,那么就可能出錯。 |