大多數電感式感測應用只能將印刷電路板(PCB)線圈或繞線電感器用作傳感器,而電感數字轉換器(LDC)卻幾乎可把任何電感器用作傳感器 —— 即使是一根彈簧。 彈簧作為傳感器時非常有用,因為彈簧的電感可隨長度的變化或其它物理變化而直接發生變化。圖1展示了如何將一根彈簧連接到一個LDC。 圖1:被LDC用作傳感器的彈簧 為評估將彈簧用作傳感器的舉措,筆者在一定長度范圍內拉伸彈簧時用LDC1612EVM評估模塊來測量彈簧的電感。為了做到這一點,筆者首先從EVM中拆掉板載傳感器并用一根彈簧取代了它。該彈簧由0.7mm厚的鋼制成,有46個圈,直徑為7.3mm。圖2展示了筆者連接到EVM的彈簧。 圖2:彈簧設置 筆者的彈簧電感太小,不能獨立地用作LDC1612的傳感器,因此筆者添加了一個串聯的2.2μH固定繞線表面貼裝器件(SMD)電感器。還使用了一個1nF的傳感器電容器,振蕩頻率為2.5MHz。圖3展示了筆者所用的傳感器組件。 圖3:傳感器組件 筆者把該彈簧從50mm拉長到100mm(5mm的增量),并在每個節距處測量LDC1612輸出數據。根據這些數據,筆者用方程式1計算出了傳感器電感: 其中 fref= 參考時鐘(在LDC1612 EVM上為40MHz)。 圖4展示了這些數據以及減去2.2μH串聯電感器電感之后的彈簧電感。 圖4:LDC1612數據以及彈簧電感與彈簧長度 當把彈簧從50mm拉伸至100mm(5mm的節距)時,筆者收集的數據樣本是無變化的,可用來精確地確定彈簧的長度。在這個彈簧壓縮范圍內,電感從1.92μH(LDC輸出16,644,000)減小到1.01μH(LDC輸出18,840,000)。因此,在該范圍內將彈簧拉長1μm可使LDC1612數據輸出平均產生44個代碼的增量。 這些數據表明,您可用電感式感測技術來直接測量因壓縮彈簧導致的電感變化,并且彈簧可替代PCB線圈和繞線電感器用作傳感器。 |