国产毛片a精品毛-国产毛片黄片-国产毛片久久国产-国产毛片久久精品-青娱乐极品在线-青娱乐精品

語音識別技術(shù)的基本原理及應(yīng)用

發(fā)布時間:2015-6-11 11:52    發(fā)布者:designapp
語音識別作為信息技術(shù)中一種人機(jī)接口的關(guān)鍵技術(shù),具有重要的研究意義和廣泛的應(yīng)用價值。介紹了語音識別技術(shù)發(fā)展的歷程,具體闡述了語音識別概念、基本原理、聲學(xué)建模方法等基本知識,并對語音識別技術(shù)在各領(lǐng)域的應(yīng)用作了簡要介紹。

語言是人類相互交流最常用、最有效、最重要和最方便的通信形式,語音是語言的聲學(xué)表現(xiàn),與機(jī)器進(jìn)行語音交流是人類一直以來的夢想。隨著計算機(jī)技術(shù)的飛速發(fā)展,語音識別技術(shù)也取得突破性的成就,人與機(jī)器用自然語言進(jìn)行對話的夢想逐步接近實現(xiàn)。語音識別技術(shù)的應(yīng)用范圍極為廣泛,不僅涉及到日常生活的方方面面,在軍事領(lǐng)域也發(fā)揮著極其重要的作用。它是信息社會朝著智能化和自動化發(fā)展的關(guān)鍵技術(shù),使人們對信息的處理和獲取更加便捷,從而提高人們的工作效率。

1 語音識別技術(shù)的發(fā)展

語音識別技術(shù)起始于20世紀(jì)50年代。這一時期,語音識別的研究主要集中在對元音、輔音、數(shù)字以及孤立詞的識別。
20世紀(jì)60年代,語音識別研究取得實質(zhì)性進(jìn)展。線性預(yù)測分析和動態(tài)規(guī)劃的提出較好地解決了語音信號模型的產(chǎn)生和語音信號不等長兩個問題,并通過語音信號的線性預(yù)測編碼,有效地解決了語音信號的特征提取。

2O世紀(jì)70年代,語音識別技術(shù)取得突破性進(jìn)展。基于動態(tài)規(guī)劃的動態(tài)時間規(guī)整(Dynamic Time Warping,DTW)技術(shù)基本成熟,特別提出了矢量量化(Vector Quantization,VQ)和隱馬爾可夫模型(Hidden Markov Model,HMM)理論。

20世紀(jì)80年代,語音識別任務(wù)開始從孤立詞、連接詞的識別轉(zhuǎn)向大詞匯量、非特定人、連續(xù)語音的識別,識別算法也從傳統(tǒng)的基于標(biāo)準(zhǔn)模板匹配的方法轉(zhuǎn)向基于統(tǒng)計模型的方法。在聲學(xué)模型方面,由于HMM能夠很好的描述語音時變性和平穩(wěn)性,開始被廣泛應(yīng)用于大詞匯量連續(xù)語音識別(Large Vocabulary Continous Speech Recognition,LVCSR)的聲學(xué)建模;在語言模型方面,以N元文法為代表的統(tǒng)計語言模型開始廣泛應(yīng)用于語音識別系統(tǒng) 。在這一階段,基于HMM/VQ、HMM/高斯混合模型、HMM/人工神經(jīng)網(wǎng)絡(luò)的語音建模方法開始廣泛應(yīng)用于LVCSR系統(tǒng),語音識別技術(shù)取得新突破。

20世紀(jì)90年代以后,伴隨著語音識別系統(tǒng)走向?qū)嵱没Z音識別在細(xì)化模型的設(shè)計、參數(shù)提取和優(yōu)化、系統(tǒng)的自適應(yīng)方面取得較大進(jìn)展 。同時,人們更多地關(guān)注話者自適應(yīng)、聽覺模型、快速搜索識別算法以及進(jìn)一步的語言模型的研究等課題 。此外,語音識別技術(shù)開始與其他領(lǐng)域相關(guān)技術(shù)進(jìn)行結(jié)合,以提高識別的準(zhǔn)確率,便于實現(xiàn)語音識別技術(shù)的產(chǎn)品化。

2 語音識別基礎(chǔ)

2.1 語音識別概念

語音識別是將人類的聲音信號轉(zhuǎn)化為文字或者指令的過程。語音識別以語音為研究對象,它是語音信號處理的一個重要研究方向,是模式識別的一個分支。語音識別的研究涉及微機(jī)技術(shù)、人工智能、數(shù)字信號處理、模式識別、聲學(xué)、語言學(xué)和認(rèn)知科學(xué)等許多學(xué)科領(lǐng)域,是一個多學(xué)科綜合性研究領(lǐng)域。

根據(jù)在不同限制條件下的研究任務(wù),產(chǎn)生了不同的研究領(lǐng)域。這些領(lǐng)域包括:根據(jù)對說話人說話方式的要求,可分為孤立字(詞)、連接詞和連續(xù)語音識別系統(tǒng);根據(jù)對說話人的依賴程度,可分為特定人和非特定人語音識別系統(tǒng);根據(jù)詞匯量的大小,可分為小詞匯量、中等詞匯量、大詞匯量以及無限詞匯量語音識別系統(tǒng)。
        
2.2 語音識別基本原理

從語音識別模型的角度講,主流的語音識別系統(tǒng)理論是建立在統(tǒng)計模式識別基礎(chǔ)之上的。語音識別的目標(biāo)是利用語音學(xué)與語言學(xué)信息,把輸入的語音特征向量序列X=x1,x2,……,xT轉(zhuǎn)化成詞序列W=w1,w2,……,wN并輸出。基于最大后驗概率的語音識別模型如下式所示:



上式表明,要尋找的最可能的詞序列



,應(yīng)該使P(X|W)與P(W)的乘積達(dá)到最大。其中,P(X|W)是特征矢量序列X在給定W條件下的條件概率,由聲學(xué)模型決定。P(W)是W獨(dú)立于語音特征矢量的先驗概率,由語言模型決定。由于將概率取對數(shù)不影響W的選取,第四個等式成立。logP(X|W)與logP(W)分別表示聲學(xué)得分與語言得分,且分別通過聲學(xué)模型與語言模型計算得到。A是平衡聲學(xué)模型與語言模型的權(quán)重。從語音識別系統(tǒng)構(gòu)成的角度講,一個完整的語音識別系統(tǒng)包括特征提取、聲學(xué)模型、語言模型、搜索算法等模塊。語音識別系統(tǒng)本質(zhì)上是一種多維模式識別系統(tǒng),對于不同的語音識別系統(tǒng),人們所采用的具體識別方法及技術(shù)不同,但其基本原理都是相同的,即將采集到的語音信號送到特征提取模塊處理,將所得到的語音特征參數(shù)送入模型庫模塊,由聲音模式匹配模塊根據(jù)模型庫對該段語音進(jìn)行識別,最后得出識別結(jié)果 。

語音識別系統(tǒng)基本原理框圖如圖1所示,其中:預(yù)處理模塊濾除原始語音信號中的次要信息及背景噪音等,包括抗混疊濾波、預(yù)加重、模/數(shù)轉(zhuǎn)換、自動增益控制等處理過程,將語音信號數(shù)字化;特征提取模塊對語音的聲學(xué)參數(shù)進(jìn)行分析后提取出語音特征參數(shù),形成特征矢量序列。語音識別系統(tǒng)常用的特征參數(shù)有短時平均幅度、短時平均能量、線性預(yù)測編碼系數(shù)、短時頻譜等。特征提取和選擇是構(gòu)建系統(tǒng)的關(guān)鍵,對識別效果極為重要。


圖1 語音識別基本原理框圖

由于語音信號本質(zhì)上屬于非平穩(wěn)信號,目前對語音信號的分析是建立在短時平穩(wěn)性假設(shè)之上的。在對語音信號作短時平穩(wěn)假設(shè)后,通過對語音信號進(jìn)行加窗,實現(xiàn)短時語音片段上的特征提取。這些短時片段被稱為幀,以幀為單位的特征序列構(gòu)成語音識別系統(tǒng)的輸人。由于梅爾倒譜系數(shù)及感知線性預(yù)測系數(shù)能夠從人耳聽覺特性的角度準(zhǔn)確刻畫語音信號,已經(jīng)成為目前主流的語音特征。為補(bǔ)償幀間獨(dú)立性假設(shè),人們在使用梅爾倒譜系數(shù)及感知線性預(yù)測系數(shù)時,通常加上它們的一階、二階差分,以引入信號特征的動態(tài)特征。

聲學(xué)模型是語音識別系統(tǒng)中最為重要的部分之一。聲學(xué)建模涉及建模單元選取、模型狀態(tài)聚類、模型參數(shù)估計等很多方面。在目前的LVCSR系統(tǒng)中,普遍采用上下文相關(guān)的模型作為基本建模單元,以刻畫連續(xù)語音的協(xié)同發(fā)音現(xiàn)象。在考慮了語境的影響后,聲學(xué)模型的數(shù)量急劇增加,LVCSR系統(tǒng)通常采用狀態(tài)聚類的方法壓縮聲學(xué)參數(shù)的數(shù)量,以簡化模型的訓(xùn)練。在訓(xùn)練過程中,系統(tǒng)對若干次訓(xùn)練語音進(jìn)行預(yù)處理,并通過特征提取得到特征矢量序列,然后由特征建模模塊建立訓(xùn)練語音的參考模式庫。

搜索是在指定的空間當(dāng)中,按照一定的優(yōu)化準(zhǔn)則,尋找最優(yōu)詞序列的過程。搜索的本質(zhì)是問題求解,廣泛應(yīng)用于語音識別、機(jī)器翻譯等人工智能和模式識別的各個領(lǐng)域。它通過利用已掌握的知識(聲學(xué)知識、語音學(xué)知識、詞典知識、語言模型知識等),在狀態(tài)(從高層至底層依次為詞、聲學(xué)模型、HMM狀態(tài))空間中找到最優(yōu)的狀態(tài)序列。最終的詞序列是對輸入的語音信號在一定準(zhǔn)則下的一個最優(yōu)描述。在識別階段,將輸入語音的特征矢量參數(shù)同訓(xùn)練得到的參考模板庫中的模式進(jìn)行相似性度量比較,將相似度最高的模式所屬的類別作為識別中間候選結(jié)果輸出。為了提高識別的正確率,在后處理模塊中對上述得到的候選識別結(jié)果繼續(xù)處理,包括通過Lattice重打分融合更高元的語言模型、通過置信度度量得到識別結(jié)果的可靠程度等。最終通過增加約束,得到更可靠的識別結(jié)果。
        
2.3 聲學(xué)建模方法

常用的聲學(xué)建模方法包含以下三種:基于模式匹配的動態(tài)時間規(guī)整法(DTW);隱馬爾可夫模型法(HMM);基于人工神經(jīng)網(wǎng)絡(luò)識別法(ANN)等。

DTW 是較早的一種模式匹配的方法。它基于動態(tài)規(guī)劃的思想,解決孤立詞語音識別中的語音信號特征參數(shù)序列比較時長度不一的模板匹配問題 在實際應(yīng)用中,DTW通過計算已預(yù)處理和分幀的語音信號與參考模板之間的相似度,再按照某種距離測度計算出模板間的相似度并選擇最佳路徑。

HMM是對語音信號的時間序列結(jié)構(gòu)所建立的統(tǒng)計模型,是在馬爾可夫鏈的基礎(chǔ)上發(fā)展起來的,它是一種基于參數(shù)模型的統(tǒng)計識別方法。HMM可模仿人的言語過程,可視作一個雙重隨機(jī)過程:一個是用具有有限狀態(tài)數(shù)的馬爾可夫鏈來模擬語音信號統(tǒng)計特性變化的隱含的隨機(jī)過程,另一個是與馬爾可夫鏈的每一個狀態(tài)相關(guān)聯(lián)的觀測序列的隨機(jī)過程。

ANN以數(shù)學(xué)模型模擬神經(jīng)元活動,將人工神經(jīng)網(wǎng)絡(luò)中大量神經(jīng)元并行分布運(yùn)算的原理、高效的學(xué)習(xí)算法以及對人的認(rèn)知系統(tǒng)的模仿能力充分運(yùn)用到語音識別領(lǐng)域,并結(jié)合神經(jīng)網(wǎng)絡(luò)和隱含馬爾可夫模型的識別算法,克服了ANN在描述語音信號時間動態(tài)特性方面的缺點,進(jìn)一步提高了語音識別的魯棒性和準(zhǔn)確率。其中成功的方法就是在混合模型中用ANN替代高斯混合模型估計音素或狀態(tài)的后驗概率。2011年,微軟以深度神經(jīng)網(wǎng)絡(luò)替代多層感知機(jī)形成的混合模型系統(tǒng)大大提高了語音識別的準(zhǔn)確率。

3 語音識別的應(yīng)用

語音識別技術(shù)有著非常廣泛的應(yīng)用領(lǐng)域和市場前景。在語音輸入控制系統(tǒng)中,它使得人們可以甩掉鍵盤,通過識別語音中的要求、請求、命令或詢問來作出正確的響應(yīng),這樣既可以克服人工鍵盤輸入速度慢,極易出差錯的缺點,又有利于縮短系統(tǒng)的反應(yīng)時間,使人機(jī)交流變得簡便易行,比如用于聲控語音撥號系統(tǒng)、聲控智能玩具、智能家電等領(lǐng)域。在智能對話查詢系統(tǒng)中,人們通過語音命令,可以方便地從遠(yuǎn)端的數(shù)據(jù)庫系統(tǒng)中查詢與提取有關(guān)信息,享受自然、友好的數(shù)據(jù)庫檢索服務(wù),例如信息網(wǎng)絡(luò)查詢、醫(yī)療服務(wù)、銀行服務(wù)等。語音識別技術(shù)還可以應(yīng)用于自動口語翻譯,即通過將口語識別技術(shù)、機(jī)器翻譯技術(shù)、語音合成技術(shù)等相結(jié)合,可將一種語言的語音輸入翻譯為另一種語言的語音輸出,實現(xiàn)跨語言交流。

語音識別技術(shù)在軍事斗爭領(lǐng)域里也有著極為重要的應(yīng)用價值和極其廣闊的應(yīng)用空間。一些語音識別技術(shù)就是著眼于軍事活動而研發(fā),并在軍事領(lǐng)域首先應(yīng)用、首獲成效的,軍事應(yīng)用對語音識別系統(tǒng)的識別精度、響應(yīng)時間、惡劣環(huán)境下的頑健性都提出了更高的要求。目前,語音識別技術(shù)已在軍事指揮和控制自動化方面得以應(yīng)用。比如,將語音識別技術(shù)應(yīng)用于航空飛行控制,可快速提高作戰(zhàn)效率和減輕飛行員的工作負(fù)擔(dān),飛行員利用語音輸人來代替?zhèn)鹘y(tǒng)的手動操作和控制各種開關(guān)和設(shè)備,以及重新改編或排列顯示器上的顯示信息等,可使飛行員把時間和精力集中于對攻擊目標(biāo)的判斷和完成其他操作上來,以便更快獲得信息來發(fā)揮戰(zhàn)術(shù)優(yōu)勢。

4 結(jié)語

語音識別的研究工作對于信息化社會的發(fā)展,人們生活水平的提高等方面有著深遠(yuǎn)的意義。隨著計算機(jī)信息技術(shù)的不斷發(fā)展,語音識別技術(shù)將取得更多重大突破,語音識別系統(tǒng)的研究將會更加深入,有著更加廣闊的發(fā)展空間。
本文地址:http://m.qingdxww.cn/thread-150463-1-1.html     【打印本頁】

本站部分文章為轉(zhuǎn)載或網(wǎng)友發(fā)布,目的在于傳遞和分享信息,并不代表本網(wǎng)贊同其觀點和對其真實性負(fù)責(zé);文章版權(quán)歸原作者及原出處所有,如涉及作品內(nèi)容、版權(quán)和其它問題,我們將根據(jù)著作權(quán)人的要求,第一時間更正或刪除。
您需要登錄后才可以發(fā)表評論 登錄 | 立即注冊

廠商推薦

  • Microchip視頻專區(qū)
  • 使用SAM-IoT Wx v2開發(fā)板演示AWS IoT Core應(yīng)用程序
  • 使用Harmony3加速TCP/IP應(yīng)用的開發(fā)培訓(xùn)教程
  • 集成高級模擬外設(shè)的PIC18F-Q71家族介紹培訓(xùn)教程
  • 探索PIC16F13145 MCU系列——快速概覽
  • 貿(mào)澤電子(Mouser)專區(qū)

相關(guān)視頻

關(guān)于我們  -  服務(wù)條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯(lián)系我們
電子工程網(wǎng) © 版權(quán)所有   京ICP備16069177號 | 京公網(wǎng)安備11010502021702
快速回復(fù) 返回頂部 返回列表
主站蜘蛛池模板: 麻豆国产人妻精品无码AV| 亚洲自偷自拍另类12p| 欧美午夜不卡| 五月香蕉网| 四虎免费观看| 愉拍自拍视频在线播放| 久久99精品视频| 午夜视频在线观看国产| 午夜 dy888理论久久| 欧美一欧美一区二三区性| 亚洲三级中文字幕| 亚洲干综合| 97精品少妇偷拍AV| 欧美熟妇互舔20p| 亚洲 欧美 国产 综合不卡| 青青草综合网| 日韩欧美一区二区不卡看片| 中文字幕一区精品| 一级寡妇乱色毛片全18| 国产国拍亚洲精品永久软件| 强壮的公次次弄得我高潮韩国电影 | 久久学生精品国产自在拍 | 亚洲色四在线视频观看| 欧洲a视频| 亚洲欧美综合在线观看| 亚洲毛片基地4455ww| 钉钉女老师| 欧美一第一页草草影院| 日本亚洲a| 日本一二三区视频| 伊人最新网址| 曰曰碰天天碰国产| 欧美黑人巨大xxxxx| 亚洲精品成人a| 日日摸夜夜搂人人要| 色中文字幕| 中文字幕日韩精品一区口| 久久亚洲伊人| 亚洲天堂网在线播放| 天天干天天爱天天射| 亚洲一卡2卡4卡5卡6卡残暴在线 |