国产毛片a精品毛-国产毛片黄片-国产毛片久久国产-国产毛片久久精品-青娱乐极品在线-青娱乐精品

開(kāi)關(guān)電源的建模和環(huán)路補(bǔ)償設(shè)計(jì)(1):小信號(hào)建模的基本概念和方法

發(fā)布時(shí)間:2015-6-9 14:18    發(fā)布者:designapp
引言

如今的電子系統(tǒng)變得越來(lái)越復(fù)雜,電源軌和電源數(shù)量都在不斷增加。為了實(shí)現(xiàn)最佳電源解決方案密度、可靠性和成本,系統(tǒng)設(shè)計(jì)師常常需要自己設(shè)計(jì)電源解決方案,而不是僅僅使用商用磚式電源。設(shè)計(jì)和優(yōu)化高性能開(kāi)關(guān)模式電源正在成為越來(lái)越頻繁、越來(lái)越具挑戰(zhàn)性的任務(wù)。

電源環(huán)路補(bǔ)償設(shè)計(jì)常常被看作是一項(xiàng)艱難的任務(wù),對(duì)經(jīng)驗(yàn)不足的電源設(shè)計(jì)師尤其如此。在實(shí)際補(bǔ)償設(shè)計(jì)中,為了調(diào)整補(bǔ)償組件的值,常常需要進(jìn)行無(wú)數(shù)次迭代。對(duì)于一個(gè)復(fù)雜系統(tǒng)而言,這不僅耗費(fèi)大量時(shí)間,而且也不夠準(zhǔn)確,因?yàn)檫@類(lèi)系統(tǒng)的電源帶寬和穩(wěn)定性裕度可能受到幾種因素的影響。本應(yīng)用指南針對(duì)開(kāi)關(guān)模式電源及其環(huán)路補(bǔ)償設(shè)計(jì),說(shuō)明了小信號(hào)建模的基本概念和方法。本文以降壓型轉(zhuǎn)換器作為典型例子,但是這些概念也能適用于其他拓?fù)洹1疚倪介紹了用戶(hù)易用的 LTpowerCAD設(shè)計(jì)工具,以減輕設(shè)計(jì)及優(yōu)化負(fù)擔(dān)。

確定問(wèn)題

一個(gè)良好設(shè)計(jì)的開(kāi)關(guān)模式電源 (SMPS) 必須是沒(méi)有噪聲的,無(wú)論從電氣還是聲學(xué)角度來(lái)看。欠補(bǔ)償系統(tǒng)可能導(dǎo)致運(yùn)行不穩(wěn)定。不穩(wěn)定電源的典型癥狀包括:磁性組件或陶瓷電容器產(chǎn)生可聽(tīng)噪聲、開(kāi)關(guān)波形中有抖動(dòng)、輸出電壓震蕩、功率 FET 過(guò)熱等等。
不過(guò),除了環(huán)路穩(wěn)定性,還有很多原因可能導(dǎo)致產(chǎn)生不想要的震蕩。不幸的是,對(duì)于經(jīng)驗(yàn)不足的電源設(shè)計(jì)師而言,這些震蕩在示波器上看起來(lái)完全相同。即使對(duì)于經(jīng)驗(yàn)豐富的工程師,有時(shí)確定引起不穩(wěn)定性的原因也是很困難。圖 1 顯示了一個(gè)不穩(wěn)定降壓型電源的典型輸出和開(kāi)關(guān)節(jié)點(diǎn)波形。調(diào)節(jié)環(huán)路補(bǔ)償可能或不可能解決電源不穩(wěn)定問(wèn)題,因?yàn)橛袝r(shí)震蕩是由其他因素引起的,例如 PCB 噪聲。如果設(shè)計(jì)師對(duì)各種可能性沒(méi)有了然于胸,那么確定引起運(yùn)行噪聲的潛藏原因可能耗費(fèi)大量時(shí)間,令人非常沮喪。


圖 1:一個(gè) “不穩(wěn)定” 降壓型轉(zhuǎn)換器的典型輸出電壓和開(kāi)關(guān)節(jié)點(diǎn)波形

對(duì)于開(kāi)關(guān)模式電源轉(zhuǎn)換器而言,例如圖 2 所示的 LTC3851 或LTC3833 電流模式降壓型電源,一種快速確定運(yùn)行不穩(wěn)定是否由環(huán)路補(bǔ)償引起的方法是,在反饋誤差放大器輸出引腳 (ITH) 和 IC 地之間放置一個(gè) 0.1μF 的大型電容器。(或者,就電壓模式電源而言,這個(gè)電容器可以放置在放大器輸出引腳和反饋引腳之間。) 這個(gè) 0.1μF 的電容器通常被認(rèn)為足夠大,可以將環(huán)路帶寬拓展至低頻,因此可確保電壓環(huán)路穩(wěn)定性。如果用上這個(gè)電容器以后,電源變得穩(wěn)定了,那么問(wèn)題就有可能用環(huán)路補(bǔ)償解決。


圖 2:典型降壓型轉(zhuǎn)換器 (LTC3851、LTC3833、LTC3866 等)

過(guò)補(bǔ)償系統(tǒng)通常是穩(wěn)定的,但是帶寬很小,瞬態(tài)響應(yīng)很慢。這樣的設(shè)計(jì)需要過(guò)大的輸出電容以滿(mǎn)足瞬態(tài)調(diào)節(jié)要求,這增大了電源的總體成本和尺寸。圖 3 顯示了降壓型轉(zhuǎn)換器在負(fù)載升高 / 降低瞬態(tài)時(shí)的典型輸出電壓和電感器電流波形。圖 3a 是穩(wěn)定但帶寬 (BW) 很小的過(guò)補(bǔ)償系統(tǒng)的波形,從波形上能看到,在瞬態(tài)時(shí)有很大的 VOUT 下沖 / 過(guò)沖。圖 3b 是大帶寬、欠補(bǔ)償系統(tǒng)的波形,其中 VOUT 的下沖 / 過(guò)充小得多,但是波形在穩(wěn)態(tài)時(shí)不穩(wěn)定。圖 3c 顯示了一個(gè)設(shè)計(jì)良好的電源之負(fù)載瞬態(tài)波形,該電源具備快速和穩(wěn)定的環(huán)路。


(a) 帶寬較小但穩(wěn)定


(b) 帶寬較大但不穩(wěn)定


(c) 具快速和穩(wěn)定環(huán)路的最佳設(shè)計(jì)

圖 3:典型負(fù)載瞬態(tài)響應(yīng) ━ (a) 過(guò)補(bǔ)償系統(tǒng);(b) 欠補(bǔ)償系統(tǒng);(c) 具快速和穩(wěn)定環(huán)路的最佳設(shè)計(jì)  
        
PWM 轉(zhuǎn)換器功率級(jí)的小信號(hào)建模

開(kāi)關(guān)模式電源 (SMPS),例如圖 4 中的降壓型轉(zhuǎn)換器,通常有兩種工作模式,采取哪種工作模式取決于其主控開(kāi)關(guān)的接通 / 斷開(kāi)狀態(tài)。因此,該電源是一個(gè)隨時(shí)間變化的非線性系統(tǒng)。為了用常規(guī)線性控制方法分析和設(shè)計(jì)補(bǔ)償電路,人們?cè)?SMPS 電路穩(wěn)態(tài)工作點(diǎn)附近,應(yīng)用針對(duì) SMPS 電路的線性化方法,開(kāi)發(fā)了一種平均式、小信號(hào)線性模型。


圖 4:降壓型 DC/DC 轉(zhuǎn)換器及其在一個(gè)開(kāi)關(guān)周期 TS 內(nèi)的兩種工作模式

建模步驟 1:通過(guò)在 TS 平均,變成不隨時(shí)間變化的系統(tǒng)

所有 SMPS 電源拓?fù)?(包括降壓型、升壓型或降壓/升壓型轉(zhuǎn)換器) 都有一個(gè)典型的 3 端子 PWM 開(kāi)關(guān)單元,該單元包括有源控制開(kāi)關(guān) Q 和無(wú)源開(kāi)關(guān) (二極管) D。為了提高效率,二極管 D 可以用同步 FET 代替,代替以后,仍然是一個(gè)無(wú)源開(kāi)關(guān)。有源端子 “a” 是有源開(kāi)關(guān)端子。無(wú)源端子 “p” 是無(wú)源開(kāi)關(guān)端子。在轉(zhuǎn)換器中,端子 a 和端子 p 始終連接到電壓源,例如降壓型轉(zhuǎn)換器中的 VIN 和地。公共端子 “c” 連接至電流源,在降壓型轉(zhuǎn)換器中就是電感器。

為了將隨時(shí)間變化的 SMPS 變成不隨時(shí)間變化的系統(tǒng),可以通過(guò)將有源開(kāi)關(guān) Q 變成平均式電流源、以及將無(wú)源開(kāi)關(guān) (二極管) D 變成平均式電壓源這種方式,應(yīng)用 3 端子 PWM 單元平均式建模方法。平均式開(kāi)關(guān) Q 的電流等于 d ● iL,而平均式開(kāi)關(guān) D 的電壓等于 d ● vap,,如圖 5 所示。平均是在一個(gè)開(kāi)關(guān)周期 TS 之內(nèi)進(jìn)行的。既然電流源和電壓源都是兩個(gè)變量的乘積,那么該系統(tǒng)仍然是非線性系統(tǒng)。


圖 5:建模步驟 1:將 3 端子 PWM 開(kāi)關(guān)單元變成平均式電流源和電壓源

建模步驟 2:線性AC 小信號(hào)建模
下一步是展開(kāi)變量的乘積以得到線性 AC 小信號(hào)模型。例如,變量

,其中 X 是 DC 穩(wěn)態(tài)的工作點(diǎn),而

是 AC 小信號(hào)圍繞 X 的變化。因此,兩個(gè)變量 x ● y 的積可以重寫(xiě)為:


圖 6:為線性小信號(hào) AC 部分和 DC 工作點(diǎn)展開(kāi)兩個(gè)變量的乘積

圖 6 顯示,線性小信號(hào) AC 部分可以與 DC 工作點(diǎn) (OP) 部分分開(kāi)。兩個(gè) AC 小信號(hào)變量 (



) 的乘積可以忽略,因?yàn)檫@是更加小的變量。按照這一概念,平均式 PWM 開(kāi)關(guān)單元可以重畫(huà)為如圖 7 所示的電路。


圖 7:建模步驟 2:通過(guò)展開(kāi)兩個(gè)變量的乘積給 AC 小信號(hào)建模

通過(guò)將上述兩步建模方法應(yīng)用到降壓型轉(zhuǎn)換器上 (如圖 8 所示),該降壓型轉(zhuǎn)換器的功率級(jí)就可以建模為簡(jiǎn)單的電壓源

,其后跟隨的是一個(gè) L/C 二階濾波器網(wǎng)絡(luò)。


圖 8:將降壓型轉(zhuǎn)換器變成平均式、AC 小信號(hào)線性電路

以圖 8 所示線性電路為基礎(chǔ),既然控制信號(hào)是占空比 d,輸出信號(hào)是 vOUT,那么在頻率域,該降壓型轉(zhuǎn)換器就可以用占空比至輸出的轉(zhuǎn)移函數(shù) Gdv(s) 來(lái)描述:



函數(shù) Gdv(s) 顯示,該降壓型轉(zhuǎn)換器的功率級(jí)是一個(gè)二階系統(tǒng),在頻率域有兩個(gè)極點(diǎn)和一個(gè)零點(diǎn)。零點(diǎn) sZ_ESR 由輸出電容器 C 及其 ESR rC 產(chǎn)生。諧振雙極點(diǎn)



由輸出濾波器電感器 L 和電容器 C 產(chǎn)生。

既然極點(diǎn)和零點(diǎn)頻率是輸出電容器及其 ESR 的函數(shù),那么函數(shù) Gdv(s) 的波德圖隨所選擇電源輸出電容器的不同而變化,如圖 9 所示。輸出電容器的選擇對(duì)該降壓型轉(zhuǎn)換器功率級(jí)的小信號(hào)特性影響很大。如果該電源使用小型輸出電容或 ESR 非常低的輸出電容器,那么 ESR 零點(diǎn)頻率就可能遠(yuǎn)遠(yuǎn)高于諧振極點(diǎn)頻率。功率級(jí)相位延遲可能接近 –180°。結(jié)果,當(dāng)負(fù)壓反饋環(huán)路閉合時(shí),可能很難補(bǔ)償該環(huán)路。


圖 9:COUT 電容器變化導(dǎo)致功率級(jí) Gdv(s) 相位顯著變化
        
升壓型轉(zhuǎn)換器的小信號(hào)模型

利用同樣的 3 端子 PWM 開(kāi)關(guān)單元平均式小信號(hào)建模方法,也可以為升壓型轉(zhuǎn)換器建模。圖 10 顯示了怎樣為升壓型轉(zhuǎn)換器建模,并將其轉(zhuǎn)換為線性 AC 小信號(hào)模型電路。


圖 10:升壓型轉(zhuǎn)換器的 AC 小信號(hào)建模電路

升壓型轉(zhuǎn)換器功率級(jí)的轉(zhuǎn)移函數(shù) Gdv(s) 可從等式 5 中得出。它也是一個(gè)二階系統(tǒng),具有 L/C 諧振。與降壓型轉(zhuǎn)換器不同,升壓型轉(zhuǎn)換器除了 COUT ESR 零點(diǎn),還有一個(gè)右半平面零點(diǎn) (RHPZ) 。該 RHPZ 導(dǎo)致增益升高,但是相位減小 (變負(fù))。等式 6 也顯示,這個(gè) RHPZ 隨占空比和負(fù)載電阻不同而變化。既然占空比是 VIN 的函數(shù),那么升壓型轉(zhuǎn)換器功率級(jí)的轉(zhuǎn)移函數(shù) Gdv(s) 就隨 VIN和負(fù)載電流而變。在低 VIN 和大負(fù)載 IOUT_MAX時(shí),RHPZ 位于最低頻率處,并導(dǎo)致顯著的相位滯后。這就使得難以設(shè)計(jì)帶寬很大的升壓型轉(zhuǎn)換器。作為一個(gè)一般的設(shè)計(jì)原則,為了確保環(huán)路穩(wěn)定性,人們?cè)O(shè)計(jì)升壓型轉(zhuǎn)換器時(shí),限定其帶寬低于其最低 RHPZ 頻率的 1/10。其他幾種拓?fù)洌缯霖?fù)降壓 / 升壓、反激式 (隔離型降壓 / 升壓)、SEPIC 和 CUK 轉(zhuǎn)換器,所有都存在不想要的 RHPZ,都不能設(shè)計(jì)成帶寬很大、瞬態(tài)響應(yīng)很快的解決方案。




圖 11:升壓型轉(zhuǎn)換器功率級(jí)小信號(hào)占空比至 VO 轉(zhuǎn)移函數(shù)隨 VIN 和負(fù)載而改變
        
用電壓模式控制閉合反饋環(huán)路

輸出電壓可以由閉合的反饋環(huán)路系統(tǒng)調(diào)節(jié)。例如,在圖 12 中,當(dāng)輸出電壓 VOUT 上升時(shí),反饋電壓 VFB 上升,負(fù)反饋誤差放大器的輸出下降,因此占空比 d 下降。結(jié)果,VOUT 被拉低,以使 VFB = VREF。誤差運(yùn)算放大器的補(bǔ)償網(wǎng)絡(luò)可以是 I 型、II 型或 III 型反饋放大器網(wǎng)絡(luò)。只有一個(gè)控制環(huán)路調(diào)節(jié) VOUT。這種控制方法稱(chēng)為電壓模式控制。凌力爾特公司的 LTC3861 和 LTC3882就是典型的電壓模式降壓型控制器。


圖 12:具閉合電壓反饋環(huán)路的電壓模式降壓型轉(zhuǎn)換器方框圖

為了優(yōu)化電壓模式 PWM 轉(zhuǎn)換器,如圖 13 所示,通常需要一種復(fù)雜的 III 型補(bǔ)償網(wǎng)絡(luò),以憑借充足的相位裕度設(shè)計(jì)一個(gè)快速環(huán)路。如等式 7 和圖 14 所示,這種補(bǔ)償網(wǎng)絡(luò)在頻率域有 3 個(gè)極點(diǎn)和兩個(gè)零點(diǎn):低頻積分極點(diǎn) (1/s) 提供高的 DC 增益,以最大限度減小 DC 調(diào)節(jié)誤差,兩個(gè)零點(diǎn)放置在系統(tǒng)諧振頻率 f0 附近,以補(bǔ)償由功率級(jí)的 L 和 C 引起的 –180° 相位延遲,在 fESR 處放置第一個(gè)高頻極點(diǎn),以消除 COUT ESR 零點(diǎn),第二個(gè)高頻極點(diǎn)放置在想要的帶寬 fC 以外,以衰減反饋環(huán)路中的開(kāi)關(guān)噪聲。III 型補(bǔ)償相當(dāng)復(fù)雜,因?yàn)檫@種補(bǔ)償需要 6 個(gè) R/C 值。找到這些值的最佳組合是個(gè)非常耗時(shí)的任務(wù)。


圖 13:用于電壓模式轉(zhuǎn)換器的 III 型反饋補(bǔ)償網(wǎng)絡(luò)




圖 14:III 型補(bǔ)償 A(s) 提供 3 個(gè)極點(diǎn)和兩個(gè)零點(diǎn),以實(shí)現(xiàn)最佳的總體環(huán)路增益 TV(s)

為了簡(jiǎn)化和自動(dòng)化開(kāi)關(guān)模式電源設(shè)計(jì),凌力爾特開(kāi)發(fā)了 LTpowerCAD 設(shè)計(jì)工具。這工具使環(huán)路補(bǔ)償設(shè)計(jì)任務(wù)變得簡(jiǎn)單多了。LTpowerCAD 是一款可在 www.linear.com.cn/LTpowerCAD 免費(fèi)下載的設(shè)計(jì)工具。該軟件幫助用戶(hù)選擇電源解決方案、設(shè)計(jì)功率級(jí)組件以及優(yōu)化電源效率和環(huán)路補(bǔ)償。如圖 15 例子所示,就給定的凌力爾特電壓模式控制器而言 (例如 LTC3861),其環(huán)路參數(shù)可用該設(shè)計(jì)工具建模。對(duì)于一個(gè)給定的功率級(jí),用戶(hù)可以確定極點(diǎn)和零點(diǎn)位置 (頻率),然后按照該軟件的指導(dǎo),帶入真實(shí)的 R/C 值,實(shí)時(shí)檢查總體環(huán)路增益和負(fù)載瞬態(tài)性能。之后,設(shè)計(jì)方案還可以輸出到一個(gè) LTspice 仿真電路上,進(jìn)行實(shí)時(shí)仿真。


(a) LTpowerCAD 功率級(jí)設(shè)計(jì)頁(yè)面


(b) LTpowerCAD 環(huán)路補(bǔ)償和負(fù)載瞬態(tài)設(shè)計(jì)頁(yè)面

圖 15:LTpowerCAD 設(shè)計(jì)工具減輕了電壓模式轉(zhuǎn)換器 III 型環(huán)路設(shè)計(jì)的負(fù)擔(dān)
(從 www.linear.com.cn/LTpowerCAD 免費(fèi)下載)  
        
為電流模式控制增加電流環(huán)路

單一環(huán)路電壓模式控制受到一些限制。這種模式需要相當(dāng)復(fù)雜的 III 型補(bǔ)償網(wǎng)絡(luò)。環(huán)路性能可能隨輸出電容器參數(shù)及寄生性變化而出現(xiàn)大幅改化,尤其是電容器 ESR 和 PCB 走線阻抗。一個(gè)可靠的電源還需要快速過(guò)流保護(hù),這就需要一種快速電流檢測(cè)方法和快速保護(hù)比較器。對(duì)于需要很多相位并聯(lián)的大電流解決方案而言,還需要一個(gè)額外的電流均分網(wǎng)絡(luò) / 環(huán)路。

給電壓模式轉(zhuǎn)換器增加一個(gè)內(nèi)部電流檢測(cè)通路和反饋環(huán)路,使其變成一個(gè)電流模式控制的轉(zhuǎn)換器。圖 16 和 17 顯示了典型峰值電流模式降壓型轉(zhuǎn)換器及其工作方式。內(nèi)部時(shí)鐘接通頂端的控制 FET。之后,只要所檢測(cè)的峰值電感器電流信號(hào)達(dá)到放大器 ITH 引腳電壓 V C,頂端的 FET 就斷開(kāi)。從概念上來(lái)看,電流環(huán)路使電感器成為一個(gè)受控電流源。因此,具閉合電流環(huán)路的功率級(jí)變成了 1 階系統(tǒng),而不是具 L/C 諧振的 2 階系統(tǒng)。結(jié)果,功率級(jí)極點(diǎn)引起的相位滯后從 180° 減少為約 90°。相位延遲減少使補(bǔ)償外部電壓環(huán)路變得容易多了。相位延遲減少還降低了電源對(duì)輸出電容器或電感變化的敏感度,如圖 18 所示。


圖 16:具內(nèi)部電流環(huán)路和外部電壓反饋環(huán)路的電流模式轉(zhuǎn)換器方框圖


圖 17:峰值電流模式控制信號(hào)波形


圖 18:具閉合電流環(huán)路的新功率級(jí)轉(zhuǎn)移函數(shù) GCV(s)

電感器電流信號(hào)可以直接用一個(gè)附加的 RSENSE檢測(cè),或者間接地通過(guò)電感器繞組 DCR 或 FET RDS(ON)檢測(cè)。電流模式控制還提供其他幾項(xiàng)重要的好處。如圖 17 所示,既然電感器電流以逐周期方式、通過(guò)放大器輸出電壓檢測(cè)和限制,那么系統(tǒng)在過(guò)載或電感器電流飽和時(shí),就能夠更準(zhǔn)確和更快速地限制電流。在加電或輸入電壓瞬態(tài)時(shí),電感器浪涌電流也受到了嚴(yán)格控制。當(dāng)多個(gè)轉(zhuǎn)換器 / 相位并聯(lián)時(shí),通過(guò)將放大器 ITH 引腳連到一起,憑借電流模式控制,可以在多個(gè)電源之間非常容易地均分電流,從而實(shí)現(xiàn)了一個(gè)可靠的多項(xiàng) (PolyPhase) 設(shè)計(jì)。典型電流模式控制器包括凌力爾特公司的 LTC3851A、LTC3833 和 LTC3855 等。

峰值與谷值電流模式控制方法

圖 16 和 17 所示的電流模式控制方法是峰值電感器電流模式控制。轉(zhuǎn)換器以固定開(kāi)關(guān)頻率 fSW工作,從而非常容易實(shí)現(xiàn)時(shí)鐘同步和相位交錯(cuò),尤其是對(duì)于并聯(lián)轉(zhuǎn)換器。然而,如果在控制 FET 柵極關(guān)斷后,緊接著就發(fā)生負(fù)載升壓瞬態(tài),那么轉(zhuǎn)換器就必須等待一段時(shí)間,這段時(shí)間等于 FET 斷開(kāi)時(shí)間 TOFF,直到下一個(gè)時(shí)鐘周期響應(yīng)該瞬態(tài)為止。這個(gè) TOFF 延遲通常不是問(wèn)題,但是對(duì)于一個(gè)真正的快速瞬態(tài)系統(tǒng),它卻很重要。此外,控制 FET 的最短接通時(shí)間 (TON_min) 不可能非常短,因?yàn)殡娏鞅容^器需要噪聲消隱時(shí)間以避免錯(cuò)誤觸發(fā)。對(duì)于高 VIN/VOUT 降壓比應(yīng)用而言,這限制了最高開(kāi)關(guān)頻率 fSW。此外,峰值電流模式控制還需要一定的斜率補(bǔ)償,以在占空比超過(guò) 50% 時(shí)保持電流環(huán)路穩(wěn)定。對(duì)于凌力爾特公司的控制器而言,這不是個(gè)問(wèn)題。凌力爾特的控制器通常有內(nèi)置自適應(yīng)斜率補(bǔ)償,以在整個(gè)占空比范圍內(nèi)確保電流環(huán)路穩(wěn)定性。LTC3851A 和 LTC3855 是典型的峰值電流模式控制器。

谷值電流模式控制器產(chǎn)生受控 FET 接通時(shí)間,并一直等待直到電感器谷值電流達(dá)到其谷值限制 (VITH)以才再次接通控制 FET。因此,電源可以在控制 FET 的 TOFF 時(shí)間響應(yīng)負(fù)載升高瞬態(tài)。此外,既然接通時(shí)間是固定的,那么控制 FET 的 TON_min可以比峰值電流模式控制時(shí)短,以允許更高的 fSW,實(shí)現(xiàn)高降壓比應(yīng)用。谷值電流模式控制不需要額外的斜率補(bǔ)償就能實(shí)現(xiàn)電流環(huán)路穩(wěn)定性。然而,使用谷值電流模式控制時(shí),因?yàn)樵试S開(kāi)關(guān)周期 TS 變化,所以在示波器上,開(kāi)關(guān)節(jié)點(diǎn)波形可能出現(xiàn)更大的抖動(dòng)。LTC3833 和 LTC3838 是典型的谷值電流模式控制器。  
        
為具備閉合電流環(huán)路的新功率級(jí)建模

圖 19 顯示,通過(guò)僅將電感器作為受放大器 ITH 引腳電壓



控制的電流源,產(chǎn)生了一個(gè)簡(jiǎn)化、具內(nèi)部電流環(huán)路的降壓型轉(zhuǎn)換器功率級(jí)的一階模型。類(lèi)似方法也可用于其他具電感器電流模式控制的拓?fù)洹_@個(gè)簡(jiǎn)單的模型有多好? 圖 20 顯示了該一階模型和一個(gè)更復(fù)雜但準(zhǔn)確的模型之間轉(zhuǎn)移函數(shù) GCV(s) = vOUT/vC的比較結(jié)果。這是一個(gè)以 500kHz 開(kāi)關(guān)頻率運(yùn)行的電流模式降壓型轉(zhuǎn)換器。在這個(gè)例子中,一階模型直到 10kHz 都是準(zhǔn)確的,約為開(kāi)關(guān)頻率 fSW 的 1/50。之后,一階模型的相位曲線就不再準(zhǔn)確了。因此這個(gè)簡(jiǎn)化的模型僅對(duì)于帶寬較小的設(shè)計(jì)才好用。


圖 19:電流模式降壓型轉(zhuǎn)換器的簡(jiǎn)單一階模型


圖 20:電流模式降壓型轉(zhuǎn)換器的一階模型和準(zhǔn)確模型之間的 GCV(s) 比較

實(shí)際上,針對(duì)電流模式轉(zhuǎn)換器,在整個(gè)頻率范圍內(nèi)開(kāi)發(fā)一個(gè)準(zhǔn)確的小信號(hào)模型相當(dāng)復(fù)雜。R. Ridley的電流模式模型 [3] 在電源行業(yè)是最流行的一種模型,用于峰值電流模式和谷值電流模式控制。最近,Jian Li 為電流模式控制開(kāi)發(fā)了一種更加直觀的電路模型 [4],該模型也可用于其他電流模式控制方法。為了簡(jiǎn)便易用,LTpowerCAD 設(shè)計(jì)工具實(shí)現(xiàn)了這些準(zhǔn)確模型,因此,即使一位經(jīng)驗(yàn)不足的用戶(hù),對(duì) Ridley 或 Jian Li 的模型沒(méi)有太多了解,也可以非常容易地設(shè)計(jì)一個(gè)電流模式電源。

參考文獻(xiàn)

[1] 《Opti-Loop Architecture Reduces Output Capacitance and Improves Transient Response》,
作者:J. Seago,凌力爾特公司《Application Note 76》,1999年5月。
[2]        《Simplified Analysis of PWM Converters Using the Model of the PWM Switch: Parts I and II》,
作者:V. Vorperian,《IEEE Transactions on Aerospace and Electronic Systems》,1990年3月,26卷,第二冊(cè)。
[3]        《An Accurate and Practical Small Signal Model for Current-Mode Control》,
作者:R. B. Ridley,www.ridleyengineering.com
[4]        《Current-Mode Control: Modeling and its Digital Application》,作者:J. Li,美國(guó)弗吉尼亞理工大學(xué)博士論文,2009年4月。
本文地址:http://m.qingdxww.cn/thread-150319-1-1.html     【打印本頁(yè)】

本站部分文章為轉(zhuǎn)載或網(wǎng)友發(fā)布,目的在于傳遞和分享信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé);文章版權(quán)歸原作者及原出處所有,如涉及作品內(nèi)容、版權(quán)和其它問(wèn)題,我們將根據(jù)著作權(quán)人的要求,第一時(shí)間更正或刪除。
您需要登錄后才可以發(fā)表評(píng)論 登錄 | 立即注冊(cè)

廠商推薦

  • Microchip視頻專(zhuān)區(qū)
  • 利用SAM E54 Xplained Pro評(píng)估工具包演示CAN轉(zhuǎn)USB橋接器以及基于CAN的主機(jī)和自舉程序應(yīng)用程序
  • 使用SAM-IoT Wx v2開(kāi)發(fā)板演示AWS IoT Core應(yīng)用程序
  • 使用Harmony3加速TCP/IP應(yīng)用的開(kāi)發(fā)培訓(xùn)教程
  • 集成高級(jí)模擬外設(shè)的PIC18F-Q71家族介紹培訓(xùn)教程
  • 貿(mào)澤電子(Mouser)專(zhuān)區(qū)

相關(guān)視頻

關(guān)于我們  -  服務(wù)條款  -  使用指南  -  站點(diǎn)地圖  -  友情鏈接  -  聯(lián)系我們
電子工程網(wǎng) © 版權(quán)所有   京ICP備16069177號(hào) | 京公網(wǎng)安備11010502021702
快速回復(fù) 返回頂部 返回列表
主站蜘蛛池模板: 日本人视频jizz4 | 在线免费观看毛片 | 亚洲 欧美 中文 日韩欧美 | 99热这里只有精品5 99热这里只有精品4 | 精品一区二区国语对白 | 91国内揄拍·国内精品对白 | 狠狠综合欧美综合欧美色 | 四色影院| 国外成人在线视频网站 | 欧美一区二区三区在线观看不卡 | 日日夜夜噜噜 | 若妻在线观看 | 青青草原伊人 | 一区二区高清在线 | 日韩欧美高清 | 黄大色大片免费久久 | 丁香综合在线 | 经典三级一区在线播放 | 婷婷视频网站 | 成年免费大片黄在线观看一 | 成年女人18毛片毛片免费 | 日韩小视频在线播放 | 亚洲 欧美 日韩在线一区 | 国产一区二区免费在线观看 | 在线观看毛片视频 | 在线高清国产 | 欧美亚洲一区二区三区导航 | 四虎影8818| 国内自拍欧美 | 青青青国产精品手机在线观看 | 日本一区二区三区视频在线观看 | 国产成人久久精品麻豆二区 | 亚洲小视频在线播放 | 国产免费不卡v片在线观看 国产免费播放一区二区三区 | 99热在线精品播放 | 成年女人18级毛片毛片免费观看 | 91啪国产在线 | 啦啦啦高清影视在线观看视频? | 日韩不卡视频在线 | 91网站免费 | 精品伊人久久 |