傳統(tǒng)白熱燈泡的調(diào)光電路,大多使用簡易的雙向交流觸發(fā)三極體(Triac)位相控制方式。白熱燈泡利用鎢絲高溫發(fā)光,使用雙向交流觸發(fā)三極體的位相控制方式,因此無電壓時段也不會產(chǎn)生閃現(xiàn)象爍,反過來說光源變成LED方式時,相同的雙向交流觸發(fā)三極體位相控制電路,頻率是一般商用頻率2倍,受到無電壓時段影響,容易出現(xiàn)閃爍現(xiàn)象。 最近美國國家半導體公司開發(fā)直接連接雙向交流觸發(fā)三極體調(diào)光器,幾乎完全不會發(fā)生閃爍現(xiàn)象的LED驅(qū)動IC LM3445與評鑒基板。接著筆者組合評鑒基板與簡易雙向交流觸發(fā)三極體調(diào)光電路,說明LM3445的評基板鑒與電路設計的重點。 評鑒基板封裝LM3445、電源電路,以及周邊電路,評鑒基板使用雙向交流觸發(fā)三極體調(diào)光電路,輸入已經(jīng)受到位相控制的電壓,利用高頻切換器提供LED電流,LED驅(qū)動器設有可以控制流入LED電流峰值的降壓轉(zhuǎn)換器,動作時設定OFF時間超過一定值以上。動作上首先接受雙向交流觸發(fā)三極體調(diào)光電路的輸出電壓,接著檢測雙向交流觸發(fā)三極體的ON時段,再將此信號轉(zhuǎn)換成流入LED電流指令值,此時流入LED電流與雙向交流觸發(fā)三極體ON時間呈比例,就能夠沿用傳統(tǒng)白熱燈泡的調(diào)光電路。此外上記評鑒基板支持還主從結(jié)構(gòu),能夠以相同電流調(diào)光復數(shù)LED。 評鑒與電路整體架構(gòu) 圖1(a)是評鑒電路方塊圖;圖1(b)是雙向交流觸發(fā)三極體的調(diào)光電路,由圖可知本電路采取“Anode fire”方式,使用雙向交流觸發(fā)三極體的兩端電壓當作驅(qū)動電壓,通過可變電阻VR后,使電容器C1充正電壓或是負電壓,此時不論極性,電容器C1的電壓一旦超過一定程度,觸發(fā)二極管通電會使雙向交流觸發(fā)三極體點弧,流入雙向交流觸發(fā)三極體的電流,即使超過一值仍舊持續(xù)通電,電流則流入負載。 圖2是評鑒基板的電路圖,根據(jù)圖1(c)的電壓波形可知,輸出調(diào)光LED的電流要求各種技巧,第1調(diào)光必需指定流入LED的電流,因此評鑒基板若能夠從雙向交流觸發(fā)三極體的ON時段獲得信息,理論上LED只要流入與該時段呈比例的電流,LED就能夠沿用傳統(tǒng)白熱燈泡的調(diào)光器進行調(diào)光。 第2是輸入評鑒基板的電源,使用雙向交流觸發(fā)三極體進行位相控制,因此無電壓時段,即使使用高頻切換電路也無法消除閃爍問題。上記電路為消除閃爍,未使用電容輸入型電路,改用填谷電路盡量減輕對電源的影響,因此本電路設置D4、D8、D9、C7、C9,以C7、C9串行電路使輸入的電壓峰值充電。 C7、C9相同容量時,各電容器的充電電壓是輸入電壓峰值的一半,換句話說輸入電壓峰值變成一半時,各電容器開始放電,輸入電壓峰值變成一半為止則以填谷電路動作,如此一來轉(zhuǎn)換器的輸入電壓能夠維持一定,同時還可以高頻使LED點燈。圖3是填谷電路與輸出、入電壓波形。由圖可知輸入電壓波形是雙向交流觸發(fā)三極體輸出整流后的波雙向交流觸發(fā)三極體的ON時段(角度),大于900時會變成一半,低于900時=1/2×sin(180-ON時段)=1/2×sinθ。 降壓轉(zhuǎn)換部位的動作 圖4是降壓轉(zhuǎn)換部位相關(guān)電路圖,由圖可知它是由切換用FET Tr2、電感L2、續(xù)流二極管D10構(gòu)成降壓轉(zhuǎn)換部主要電路,除此之外電流復歸用電阻器R3、決定FET OFF時間的電容器C1、充電電路Tr3、R4、吸收波動電流的電容器C12、LM3445的內(nèi)部結(jié)構(gòu),鎖定轉(zhuǎn)換器的動作,細節(jié)忽略不詳述。圖中的L5是磁珠電感,它可以抑制續(xù)流二極管D10的逆回復電流。 IC內(nèi)部的起動電路一旦開始動作,GATE信號變成H,就會使Tr2 ON進入行程。LM63445即使ON,電流的檢測不會以一定時間進行,IC內(nèi)部的125ns延遲時間內(nèi),電流檢測電阻R3的電壓R3,利用內(nèi)部FET持續(xù)限制在0V,PWM與I-LIN兩轉(zhuǎn)換器的輸入維持L狀態(tài),這樣的設計主要目的是考慮Tr2 ON時,二極管D10的逆向回復電流很大,避免瞬間遷移至GATE信號變成OFF狀態(tài),轉(zhuǎn)換器可能無法起動。 延遲時間內(nèi)Tr2 ON時電流的過渡變化,Tr2的電流與L2一旦相同,就進入檢測L2電流變化的行程,該電流檢測功能有所謂無效時間,因此降壓轉(zhuǎn)換器的輸入電壓最大值時,為確實保障此延遲時間,如圖5所示要求最小200ns的ON時間。延遲時間之后隨著直線上升的L2電壓,R3的電壓也直線上升,該電壓經(jīng)過電流感測端子ISNS輸入至PWM轉(zhuǎn)換器,一直到電壓到達電流指令值為止,GATE信號維持ON狀態(tài)。評鑒基板的電流檢測用電阻R3大約1.8Ω,PWM的電流指令值最大值,750mV時為417mA,延遲時間與溫度有依存關(guān)系,大約100~160ns。 決定OFF時間的電容器C11與定電流電路Tr3、R4,定電流電路利用LED的順向電壓,配合LED的電壓使電流流動C11,C11的電壓呈直線性上升,利用該電壓與時間呈比例的特性。定電流電路的動作非常簡單,配合LED的順定下降電流流入R4,Tr3的基準電流配合Tr2的增幅率電流流動,由于流入Tr3集極(collector)的電流與流入R4的電流幾乎相同,因此C11內(nèi)部有一定電流流動,該電壓呈直線性上升,C11的電壓被輸入至LM3445的COFF則進入COFF的比較器(Comparator),電壓一旦超過1.276V基準電壓,再度使GATE信號移轉(zhuǎn)至ON狀態(tài),換言之OFF時間是與LED的電壓呈比例的值。 綜合上記結(jié)論可知,GATE信號ON時IC的COFF輸入,亦即C11在IC內(nèi)部以33Ω的阻抗值短路,此時C11的電壓幾乎維持0V,一旦進入OFF行程就開始對C11定電流充電,亦即開始時間計數(shù)。接著以評鑒基板為例試算OFF時間。 假設: OFFB時間=3.2μS L2=470μH 如此一來就可以求得波動電流: 降壓轉(zhuǎn)換器的動作概要如上記,降壓轉(zhuǎn)換器的電流指令利用雙向交流觸發(fā)三極體產(chǎn)生,圖7(a)是電流指令值產(chǎn)生電路;圖7(b)是動作概要;圖7(c)是電流指令值的范圍。利用雙向交流觸發(fā)三極體體進行位相控制的電壓,亦即雙向交流觸發(fā)三極體導通時輸入的電壓,被施加至Tr1的網(wǎng)關(guān)與汲極,一旦施加位相控制的電壓,雖然取決于Tr1的特性,不過此時大約10V的電壓被輸入至BLDR端子,輸入峰值7.2V的轉(zhuǎn)換器輸出遷移變成H,4μs后230Ω的負載加入轉(zhuǎn)換器輸入,可以補強雙向交流觸發(fā)三極體的拴鎖器電流,使雙向交流觸發(fā)三極體正確動作。 由此可知FLTR1的電壓值與雙向交流觸發(fā)三極體的導通角度呈比例,可以檢測的控制角θ在一定范圍內(nèi)。雙向交流觸發(fā)三極體的導通角度為1800-θ,導通角度與半波周期比1800-θ/1800的值,在1/4~1/3范圍內(nèi),因此在450≦θ≦1350范圍內(nèi),產(chǎn)生與角度(1800-θ)呈比例的電流指令,θ=1350時,電流指令=0V,θ=450時,電流指令=750mV最大值。 周邊電路的設計 以上根據(jù)LM3445評鑒基板電路與電路定數(shù),探討電路動作特性,接著介紹LM3445周邊電路的設計技巧。LM3445的主要功能分別如下: (1)以位相控制的雙向交流觸發(fā)三極體為前提,將雙向交流觸發(fā)三極體的通電角度轉(zhuǎn)換成流入LED的指令值,支持位相角度450~1350范圍,電流指令值最大750mV~0V (2)以降壓轉(zhuǎn)換器OFF時間一定方式為前提,優(yōu)先穩(wěn)定動作,利用LED的電壓幾乎是一定的特征。 (3)降壓轉(zhuǎn)換器ON時脈沖寬度必需是最小值的限制,要求200ns以上,因此轉(zhuǎn)換器的輸入電壓有上限的限制。 (4)降壓轉(zhuǎn)換器的最低輸入電壓,要求雙向交流觸發(fā)三極體位相角度1350時,交流輸入電壓值必需大于LED的電壓。利用降壓轉(zhuǎn)換器使LED的電流維持一定,LED的電壓VLED與轉(zhuǎn)換器的輸入電壓Vbuck比D在轉(zhuǎn)換器沒有損失時,它與切換組件Tr2的ON時間,以及控制周期T的比完全相同,有損失時D與效率η呈反比率變大,此時使用下式表示: ˙電壓:AC90V~135V ˙電流:350mA ˙LED數(shù)量:串聯(lián)7~8個 評鑒電路選擇LED電流350mA種類,評鑒基板根據(jù)定數(shù)以250kHz附近動作,使用評鑒電路的條件進行。LED的條件如下: ˙VF = 2.79~3.42~3.99V ˙ILED = IF = 350mA(最大),500mA(脈沖) ˙輸入電壓:AC80~120V(AC100V±20%) ˙動作頻率:額定輸入電壓時250kHz 假設降壓轉(zhuǎn)換器輸入電壓為額定電壓峰值,降壓轉(zhuǎn)換器的效率η,根據(jù)技術(shù)資料為85%,依此試算LED串聯(lián)8、7、6、5、4,此時VLED分別是27.36、23.94、20.52、17.1、13.68,根據(jù)上式(1): ˙toff = 3.09μs@8個LED串聯(lián) ˙toff = 3.20μs@7個LED串聯(lián) ˙toff = 3.32μs@6個LED串聯(lián) ˙toff = 3.43μs@5個LED串聯(lián) ˙toff = 3.54μs@4個LED串聯(lián) 最后決定采用toff =3.09μs。C11到達LM3445 COFF 峰值1.276V的時間,取決于C11的容量與一定充電的電流ICOLL,ICOLL(一般數(shù)十μA)的選擇由C11決定,C11以下式表示: Δi=350×0.5=175mA 接著計算L2的電感值: C7與C9放電時放電量很大的場合,輸入電壓很小卻提供最大電流,此時電容器只進行放電,一直到下次放電為止的期間,如果電壓降至電流無法流入LED的值,就不能確保LED的光束量,為避免上記問題,設計上C7與C9的電壓值選擇超越LED的電壓。電壓Vbuck最小值如圖8所示假設: ΔV=20V 54-20=34>27.36V 因此C7與C9在20V放電也可以。 Δt=3.33ms(相當于50Hz電源60°) 由于C7與C9都是33μF,因此C=66μF非常充分。此外評鑒基板還設置: ˙消除波動濾波器(L3、C1、L4、C15) ˙一般模式濾波器(L1) ˙累增二極管(Avalanche Diode)(D12) ˙熱敏電阻(Thermistor)(RT1) ˙保險絲(F1) 有關(guān)消除波動濾波器,由于Tr2的OFF時間與ON時間大幅改變,設計消除波動濾波器時,必需考慮以動作頻率最低值抑制波動電流。有關(guān)一般模式濾波器,要求可以檢查開啟電源時,流入電解電容器的突波電流、二極管、電容器的電流、電壓耐量的協(xié)調(diào)動作。突波電流必需配合消除波動濾波器的關(guān)系進行檢討,雖然一般模式濾波器增加對地阻抗,可以抑制漏泄電流,不過對Tr2、D10的特性、基板布線結(jié)構(gòu)卻有相關(guān)性。 組件表內(nèi)記載D12的破壞電壓VBR=144V,不過實際封裝組件與廠商的標示不一致,假設組件表內(nèi)的記載數(shù)據(jù)是正確的話,筆者建議重新檢討AC135V輸入時的動作。 電路測試結(jié)果 測試電路測試條件與測試結(jié)果分別如下: 測試條件 ˙輸入電壓:AC80V ˙通流角度:450以下,900附近,1350以上 ˙測試部位:TP3----V+→整流端的電壓 TP4----Vbuck→埋谷電路輸出電壓 Tr1----源極端子→BLDR輸入 TP15----GATE信號 TP16----R3電壓(檢測電流) 測試結(jié)果與考察 圖9是雙向交流觸發(fā)三極體導通電流的角度與LED電流的變化測試結(jié)果,根據(jù)測試結(jié)果可知雙向交流觸發(fā)三極體未通電領(lǐng)域,一直到所有通電領(lǐng)域都非常穩(wěn)定動作。圖10是交流輸入電流的波形,雖然流入填埋電路C7、C9的充電電流非常顯眼,不過它可以利用濾波器L3、L4抑制,比所謂的電容輸入電路更優(yōu)秀。 隨著LED芯片電光轉(zhuǎn)換效率的提升,制作成本卻持續(xù)下跌,使用LED光源的照明燈具逐漸取代傳統(tǒng)熒光燈與白熱燈泡,開發(fā)LED燈泡專用調(diào)光器的同時,市場要求能夠沿用白熱燈泡調(diào)光器的聲浪也日益高漲,傳統(tǒng)白熱燈泡的調(diào)光器,使用結(jié)構(gòu)簡易的雙向交流觸發(fā)三極體位相控制,由于白熱燈泡主要是透過鎢絲高溫發(fā)光,因此雙向交流觸發(fā)三極體的位相控制,無電壓時段也不會產(chǎn)生閃現(xiàn)象爍。 光源變成LED方式時,相同的雙向交流觸發(fā)三極體位相控制,頻率是一般商用頻率2倍,受到無電壓時段的影響,LED Lamp容易出現(xiàn)閃爍現(xiàn)象,有鑒于此美國國家半導體公司開發(fā),可以直接連接雙向交流觸發(fā)三極體的調(diào)光電路,以及幾乎完全不會發(fā)生閃爍現(xiàn)象的LED驅(qū)動IC LM3445,透過此專用LED驅(qū)動IC,就能夠輕易實現(xiàn)沿用白熱燈泡調(diào)光器的目標。 |