作者:Robert Kollman,德州儀器 (TI) 在本篇電源設(shè)計小貼士中,我們將繼續(xù)討論共模電流問題。如前所述我們可以使用一個機(jī)架電容將共模電流返回至電源,該電容還可以降低噪聲的源阻抗。然而就我們可以使用的電容大小而言是有一個安全極限的,其決定了共模濾波器的剩余量。共模電流是由 Q1 漏極上的大 AC 開關(guān)電壓產(chǎn)生的(請參見圖 1),其使得電流流經(jīng)雜散電容進(jìn)入機(jī)架接地。機(jī)架電容 C1 為其提供了一個在電源中返回而不會流經(jīng) AC 輸入源接地連接的路徑。共模電感 L1 通過在電源機(jī)架和 AC 輸入源之間的路徑中添加阻抗來限制共模輻射。1 MHz 時,4700 pF 機(jī)架電容的最大容許感抗為 30 Ohms。為了讓所有開關(guān)產(chǎn)生的電流都進(jìn)入到機(jī)架電容 C1,這一電感需要在高頻率范圍內(nèi)具有高阻抗(數(shù)千歐姆)。 圖 1 高阻抗共模電感 (L1) 降低了輻射 更進(jìn)一步觀察 T2,電感位于熱線和中線組合路徑,差動電感不再用于降低共模電流。許多設(shè)計人員都使用 L1 漏電感進(jìn)行差動濾波。由于有了電感連接(如圖 1 所示),在電感中就沒有了凈 DC 電流,這就是說可以使用一個高磁導(dǎo)率無隙磁芯。圖 2 顯示了典型共模電感磁芯材料與頻率之間關(guān)系的相關(guān)磁導(dǎo)率。就磁導(dǎo)率而言有真實部分 (real part) 也有復(fù)極部分 (complex part)。當(dāng)復(fù)極部分與材料損耗相關(guān)時真實部分就與電感相關(guān)。由于該圖表述為串聯(lián)組件,因此總體阻抗為二者的矢量和。這是極具價值的,因為即使電感的真實部分在 300 kHz 頻率時作用開始衰減并且在高于 1-2 MHz 時無法使用,阻抗取決于1 MHz 以上時材料的損耗情況并繼續(xù)實現(xiàn)10 MHz 的高效率。 圖2尋找一種具有高磁導(dǎo)率裕量的磁芯材料 一旦您選定了磁芯材料,接下來的最大挑戰(zhàn)就是如何充分利用磁芯材料的高磁導(dǎo)性(請參見圖 3),該圖顯示了 28 mH 阻抗共模與頻率的關(guān)系。在低頻率時,該器就像是一個電感器,但是在高頻率時其更像是一個分布電容,該電容與電感共振。由于該大電感,23 pF 分布式電容就會影響電感在 200 kHz 以上時的性能。設(shè)計一款高性能共模電感的關(guān)鍵就是選擇扇形繞組、單個繞組并精心選擇磁芯最小化繞組的數(shù)量來最小化電容。有時這些共振是不可避免的并且在較高頻率時需要額外的濾波。在這些情況下,我們可以再添加一個電感來對較高頻率進(jìn)行濾波。 圖 3 分布電容降低了共模電感阻抗 總之,出于對噪聲的高源阻抗以及安全性考慮,AC 電源的共模濾波包含了若干高阻抗組件以將電容限制在機(jī)架以內(nèi)。由于中間繞組電容的存在,就高頻率下的高阻抗而言,要想實現(xiàn)上述功能,共模電感面臨著很大的挑戰(zhàn)。在選擇磁芯材料時需十分謹(jǐn)慎,材料磁導(dǎo)性裕量必須一直保持在高水平。此外,必須要對分布式繞組電容進(jìn)行適當(dāng)控制。一個僅為 30 pF 的分布式電容就可損壞電感的阻抗。在大多數(shù)情況下,設(shè)計人員會使用串聯(lián)的兩個電感(每個電感在特定的頻帶內(nèi)均能提供濾波功能)來解決這一問題。 如欲了解本文的更多詳情,敬請參閱 2003 電源設(shè)計研討會www.ti.com/2003powerseminar-ca。 下次,我們將討論如何選擇開關(guān)模式電源中的電容,敬請期待。 本文以及其他電源解決方案的詳情,敬請訪問:http://www.ti.com.cn/lsds/ti_zh/ ... t/power_portal.page 。 |