LED是利用化合物材料制成pn結的光電器件。它具備pn結結型器件的電學特性:I-V特性、C-V特性和光學特性:光譜響應特性、發光光強指向特性、時間特性以及熱學特性。本文將為你詳細介紹。 1、LED電學特性 1.1 I-V特性 表征LED芯片pn結制備性能主要參數。LED的I-V特性具有非線性、整流性質:單向導電性,即外加正偏壓表現低接觸電阻,反之為高接觸電阻。 (1) 正向死區:(圖oa 或oa′段)a點對于V0 為開啟電壓,當V<Va,外加電場尚克服不少因載流子擴散而形成勢壘電場,此時R很大;開啟電壓對于不同LED其值不同,GaAs 為1V,紅色GaAsP 為1.2V,GaP 為1.8V,GaN 為2.5V。 (2)正向工作區:電流IF 與外加電壓呈指數關系 IF = IS (e qVF/KT –1) -------------------------IS 為反向飽和電流。V>0 時,V>VF 的正向工作區IF 隨VF 指數上升, IF = IS e qVF/KT (3)反向死區 :V<0 時pn 結加反偏壓V= - VR 時,反向漏電流IR(V= -5V)時,GaP 為0V,GaN 為10uA。 (4)反向擊穿區 V<- VR ,VR 稱為反向擊穿電壓;VR 電壓對應IR 為反向漏電流。當反向偏壓一直增加使V<- VR 時,則出現IR 突然增加而出現擊穿現象。由于所用化合物材料種類不同,各種LED 的反向擊穿電壓VR 也不同。 1.2 C-V特性 鑒于LED 的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mil (300×300um),故pn 結面積大小不一,使其結電容(零偏壓)C≈n+pf左右。C-V 特性呈二次函數關系(如圖2)。由1MHZ 交流信號用C-V 特性測試儀測得。 當流過LED的電流為IF、管壓降為UF 則功率消耗為P=UF×IF. LED工作時,外加偏壓、偏流一定促使載流子復合發出光,還有一部分變為熱,使結溫升高。若結溫為Tj、外部環境溫度為Ta,則當Tj>Ta 時,內部熱量借助管座向外傳熱,散逸熱量(功率),可表示為P = KT(Tj – Ta)。 1.4 響應時間 響應時間表征某一顯示器跟蹤外部信息變化的快慢。現有幾種顯示LCD(液晶顯示)約10-3~10-5S,CRT、PDP、LED 都達到10-6~10-7S(us 級)。 1.響應時間從使用角度來看,就是LED點亮與熄滅所延遲的時間,即圖3中tr 、tf 。圖中t0 值很小,可忽略。 不同材料制得的LED 響應時間各不相同;如GaAs、GaAsP、GaAlAs 其響應時間<10-9S,GaP 為10-7 S。因此它們可用在10~100MHZ 高頻系統。 2 LED光學特性 發光二極管有紅外(非可見)與可見光兩個系列,前者可用輻射度,后者可用光度學來量度其光學特性。 2.1 發光法向光強及其角分布Iθ 2.1.1 發光強度(法向光強)是表征發光器件發光強弱的重要性能。LED 大量應用要求是圓柱、圓球封裝,由于凸透鏡的作用,故都具有很強指向性:位于法向方向光強最大,其與水平面交角為90°。當偏離正法向不同θ角度,光強也隨之變化。發光強度隨著不同封裝形狀而強度依賴角方向。 2.1.2 發光強度的角分布Iθ是描述LED發光在空間各個方向上光強分布。它主要取決于封裝的工藝(包括支架、模粒頭、環氧樹脂中添加散射劑與否) ⑴ 為獲得高指向性的角分布(如圖4) ② 使用圓錐狀(子彈頭)的模粒頭; ③ 封裝的環氧樹脂中勿加散射劑。 采取上述措施可使LED 2θ1/2 = 6°左右,大大提高了指向性。 ⑵ 當前幾種常用封裝的散射角(2θ1/2 角)圓形LED:5°、10°、30°、45°。 2.2 發光峰值波長及其光譜分布 ⑴ LED 發光強度或光功率輸出隨著波長變化而不同,繪成一條分布曲線——光譜分布曲線。當此曲線確定之后,器件的有關主波長、純度等相關色度學參數亦隨之而定。 LED 的光譜分布與制備所用化合物半導體種類、性質及pn結結構(外延層厚度、摻雜雜質)等有關,而與器件的幾何形狀、封裝方式無關。 下圖繪出幾種由不同化合物半導體及摻雜制得LED 光譜響應曲線。其中 ② 是綠色GaP:N 的LED,發光譜峰λp = 550nm; ③ 是紅色GaP:Zn-O 的LED,發光譜峰λp = 680~700nm; ④ 是紅外LED 使用GaAs 材料,發光譜峰λp = 910nm; ⑤ 是Si 光電二極管,通常作光電接收用。 由圖可見,無論什么材料制成的LED,都有一個相對光強度最強處(光輸出最大),與之相對應有一個波長,此波長叫峰值波長,用λp表示。只有單色光才有λp波長。 ⑵ 譜線寬度:在LED 譜線的峰值兩側±△λ處,存在兩個光強等于峰值(最大光強度)一半的點,此兩點分別對應λp-△λ,λp+△λ 之間寬度叫譜線寬度,也稱半功率寬度或半高寬度。半高寬度反映譜線寬窄,即LED 單色性的參數,LED 半寬小于40 nm。 ⑶ 主波長:有的LED 發光不單是單一色,即不僅有一個峰值波長;甚至有多個峰值,并非單色光。為此描述LED 色度特性而引入主波長。主波長就是人眼所能觀察到的,由LED 發出主要單色光的波長。單色性越好,則λp也就是主波長。如GaP 材料可發出多個峰值波長,而主波長只有一個,它會隨著LED 長期工作,結溫升高而主波長偏向長波。 2.3 光通量 光通量F是表征LED 總光輸出的輻射能量,它標志器件的性能優劣。F為LED 向各個方向發光的能量之和,它與工作電流直接有關。隨著電流增加,LED 光通量隨之增大。可見光LED 的光通量單位為流明(lm)。 LED向外輻射的功率——光通量與芯片材料、封裝工藝水平及外加恒流源大小有關。目前單色LED 的光通量最大約1 lm,白光LED 的F≈1.5~1.8 lm(小芯片),對于1mm×1mm的功率級芯片制成白光LED,其F=18 lm。 2.4 發光效率和視覺靈敏度 ① LED效率有內部效率(pn結附近由電能轉化成光能的效率)與外部效率(輻射到外部的效率)。前者只是用來分析和評價芯片優劣的特性。LED光電最重要的特性是用輻射出光能量(發光量)與輸入電能之比,即發光效率。 ② 視覺靈敏度是使用照明與光度學中一些參量。人的視覺靈敏度在λ = 555nm 處有一個最大值680 lm/w,若視覺靈敏度記為Kλ,則發光能量P 與可見光通量F 之間關系為P=∫Pλdλ ; F=∫KλPλdλ ③ 發光效率——量子效率η=發射的光子數/pn 結載流子數=(e/hcI)∫λPλdλ。若輸入能量為W=UI,則發光能量效率ηP=P/W 若光子能量hc=ev,則η≈ηP,則總光通F=(F/P)P=KηPW 式中K= F/P。 ④ 流明效率:LED 的光通量F/外加耗電功率W=KηP 它是評價具有外封裝LED 特性,LED 的流明效率高指在同樣外加電流下輻射可見光的能量較大,故也叫可見光發光效率。 以下列出幾種常見LED 流明效率(可見光發光效率): 由于LED 材料折射率很高ηi≈3.6。當芯片發出光在晶體材料與空氣界面時(無環氧封裝)若垂直入射,被空氣反射,反射率為(n1-1)2/(n1+1)2=0.32,反射出的占32%,鑒于晶體本身對光有相當一部分的吸收,于是大大降低了外部出光效率。為了進一步提高外部出光效率ηe 可采取以下措施: ① 用折射率較高的透明材料(環氧樹脂n=1.55 并不理想)覆蓋在芯片表面; ② 把芯片晶體表面加工成半球形; ③ 用Eg大的化合物半導體作襯底以減少晶體內光吸收。有人曾經用n=2.4~2.6的低熔點玻璃[成分As-S(Se)-Br(I)]且熱塑性大的作封帽,可使紅外GaAs、GaAsP、GaAlAs 的LED 效率提高4~6倍。 2.5 發光亮度 亮度是LED 發光性能又一重要參數,具有很強方向性。其正法線方向的亮度BO=IO/A,指定某方向上發光體表面亮度等于發光體表面上單位投射面積在單位立體角內所輻射的光通量,單位為cd/m2 或Nit。 LED 亮度與外加電流密度有關,一般的LED,JO(電流密度)增加BO 也近似增大。另外,亮度還與環境溫度有關,環境溫度升高,ηc(復合效率)下降,BO減小。當環境溫度不變,電流增大足以引起pn結結溫升高,溫升后,亮度呈飽和狀態。 2.6 壽命 老化:LED 發光亮度隨著長時間工作而出現光強或光亮度衰減現象。器件老化程度與外加恒流源的大小有關,可描述為Bt=BO e-t/τ,Bt 為t 時間后的亮度,BO 為初始亮度。 通常把亮度降到Bt=1/2BO 所經歷的時間t 稱為二極管的壽命。測定t 要花很長的時間,通常以推算求得壽命。 長期以來總認為LED 壽命為106小時,這是指單個LED 在IF=20mA 下。隨著功率型LED開發應用,國外學者認為以LED的光衰減百分比數值作為壽命的依據。 如LED 的光衰減為原來35%,壽命>6000h。 3 熱學特性 LED的光學參數與pn 結結溫有很大的關系。一般工作在小電流IF<10mA,或者10~20 mA 長時間連續點亮LED 溫升不明顯。 若環境溫度較高,LED 的主波長或λp 就會向長波長漂移,BO 也會下降,尤其是點陣、大顯示屏的溫升對LED 的可靠性、穩定性影響應專門設計散射通風裝置。 LED的主波長隨溫度關系可表示為: 來源:互聯網 |