国产毛片a精品毛-国产毛片黄片-国产毛片久久国产-国产毛片久久精品-青娱乐极品在线-青娱乐精品

半橋拓撲結構高端MOSFET驅動方案選擇:變壓器還是硅芯片?

發(fā)布時間:2010-3-16 10:32    發(fā)布者:嵌入式公社
關鍵詞: MOSFET , 變壓器 , 高端 , 拓撲 , 芯片
在節(jié)能環(huán)保意識的鞭策及世界各地最新能效規(guī)范的推動下,提高能效已經成為業(yè)界共識。與反激、正激、雙開關反激、雙開關正激和全橋等硬開關技術相比,雙電感加單電容(LLC)、有源鉗位反激、有源鉗位正激、非對稱半橋(AHB)及移相全橋等軟開關技術能提供更高的能效。因此,在注重高能效的應用中,軟開關技術越來越受設計人員青睞。

另一方面,半橋配置最適合提供高能效/高功率密度的中低功率應用。半橋配置涉及兩種基本類型的MOSFET驅動器,即高端(High-Side)驅動器和低端(Low-Side)驅動器。高端表示MOSFET的源極能夠在地與高壓輸入端之間浮動,而低端表示MOSFET的源極始終接地,參見圖1。當高端開關從關閉轉向導通時,MOSFET源極電壓從地電平上升至高壓輸入端電平,這表示施加在MOSFET門極的電壓也必須隨之浮動上升。這要求某種形式的隔離或浮動門驅動電路。與之不同,低端MOSFET的源極始終接地,故門驅動電壓也能夠接地參考,這使驅動低端MOSFET的門極更加簡單。

                                   
圖1:LLC半橋拓撲結構電路圖

所有軟開關拓撲結構都應用帶浮接參考引腳(如MOSFET源極引腳)的功率開關。在如圖1所示的LLC半橋拓撲結構中,高端MOSFET開關連接至高壓輸入端,不能夠采用主電源控制器來驅動,而需要另行選定驅動電路。這驅動電路是控制電路與功率開關之間的接口,將控制信號放大至驅動功率開關管所要求的電平,并在功率開關管與邏輯電平控制電路之間有要求時提供電氣隔離。高端MOSFET驅動方案常見的有兩種,一是基于變壓器的方案,二是基于硅集成電路(IC)驅動器的方案。本文將分別討論這兩種半橋拓撲結構高端MOSFET驅動方案的設計考慮因素,并從多個角度比較這兩種驅動方案,及提供安森美半導體的建議方案。

變壓器驅動方案

基于變壓器的高端MOSFET驅動方案在設計過程中涉及到一些重要的考慮因素。例如,由于是對地參考點浮動驅動,如果設計中存在400 V功率因數(shù)校正(PFC)電路,則要保持500 V隔離。此外,要將漏電感減至最小,否則輸出與輸入繞組之間的延遲可能會損壞功率MOSFET。要遵守法拉第定律,保持V*T乘積恒定,否則會飽和。要保持足夠裕量,防止飽和,尤其是在交流高壓輸入和瞬態(tài)負載的情況下。要使用高磁導率鐵芯,從而將勵磁電流(IM)降至最低。要保持高灌電流(sink current)能力,使開關速度加快。

基于變壓器的驅動方案包含兩種主要類型,分別是單驅動(DRV)輸入和雙驅動輸入,參見圖2a及圖2b。單驅動輸入方案中,需要增加交流耦合電容(CC)來復位驅動變壓器的磁通。這種方案中的門極-源極電壓(VGS)幅度取決于占空比;另外,穩(wěn)態(tài)時-VC關閉,而在啟動時灌電流能力受限。這種方案需要快速的時間常數(shù)(LM//RGS * CC),防止由快速瞬態(tài)事件導致的磁通走漏(flux walking)。 另外,在設計過程中,也需要留意跳周期模式或欠壓鎖定(UVLO)時耦合電容與驅動變壓器之間的振鈴,需要使用二極管來抑制振鈴。

單驅動輸入包括帶直流恢復的單驅動輸入及帶PNP關閉的單驅動輸入。其中,帶直流恢復的單驅動輸入在穩(wěn)態(tài)時VGS取決于占空比,但灌電流能力有限;后者則采用PNP晶體管+二極管的組合來幫助改善關閉(switching off)操作。此外,對單驅動輸入而言,還不能忽略與門。如果與門驅動能力有限,要增加圖騰柱(totem-pole)驅動器。

圖2b顯示的是雙極性對稱驅動輸入方案的電路圖。在這種方案中,兩個輸入(DRVA和DRVB)的極性相反,位置對稱,故不同于單驅動輸入方案,無需交流耦合電容。這種方案適合推挽型電路,如LLC-HB,但不適合非對稱電路,如非對稱半橋或有源鉗位。這種方案需要注意線路/負載瞬態(tài)時的驅動變壓器磁通,仍然需要強大的關閉能力。需要注意由泄漏電感導致的延遲,將泄漏電感減至最小,并使用雙輸出繞組而非單輸出繞組。這種方案的另一項不足是關閉電阻(Roff)壓降會導致額外的功率損耗。


圖2:單驅動輸入(a)與雙驅動輸入(b)變壓器驅動方案電路對比。

綜合來看,變壓器驅動方案有多項優(yōu)勢,一是變壓器比裸片更強固,二是對雜散噪聲及高dV/dt脈沖較不敏感,當然,成本也可能更便宜。但其劣勢是電路復雜,需要注意極端線路/負載條件及關閉模式,且需注意泄漏電感及隔離,還要留意汲電流能力是否夠強。

硅芯片驅動方案

與變壓器驅動方案類似,硅集成電路驅動方案也包含單驅動輸入和雙驅動輸入這兩種類型,分別見圖3a及圖3b。不過,這些硅半橋驅動器既能用作高端MOSFET驅動器,也能用作低端MOSFET驅動器。硅芯片高端MOSFET驅動方案采用緊湊、高性能的封裝,在單顆芯片中集成了驅動高端MOSFET所需的大多數(shù)功能,增加少數(shù)幾個外部元件后就能提供快速的開關速度,提供閂鎖關閉功能,輸入指令與門驅動輸出之間的延遲極低,功率耗散也較低。


圖3:硅芯片驅動方案電路圖:a雙輸入;b單輸入。

但在提供這些優(yōu)勢的同時,硅芯片驅動方案也有一些局限,如硅芯片內電壓達600 V,需要高端隔離,且需要匹配高端驅動與低端驅動之間的傳播延遲,避免使用任何不平衡變壓器。此外,高端驅動器需要自舉供電(bootstrap supply),并且需較高抗干擾能力,抑制高端驅動器的負電壓影響。就高壓隔離而言,需要在電路中增加脈沖觸發(fā)器、電平轉換器和同步整流觸發(fā)器。其中,電平轉換器維持高達600 V電壓。就匹配延遲而言,在低端驅動器通道上加入延遲時間,從而補償由脈沖觸發(fā)器、電平轉換器和同步整流觸發(fā)器導致的高端延遲。而就高端驅動器的負電壓而言,我們著重關注半橋支路來研究。連接至半橋支路的負載是電感型負載,類似于LLC半橋,或在最簡單的情況下是同步降壓結構。就降壓轉換器的實際工作來看,寄生電感和寄生電容等寄生參數(shù)隨處可見,橋引腳上的負電壓將會在驅動IC內部產生負電流,且負電壓會在每個脈沖寬度增大,直到硅驅動器(或稱驅動器IC)失效。若能在寬溫度范圍內將負脈沖保持在恰當?shù)膮^(qū)域內,驅動器將正常工作;否則,驅動器將不會正常工作或可能損壞。

安森美半導體在-40℃至+125℃的完整溫度范圍內定義驅動IC的電氣參數(shù),相關的高端MOSFET硅驅動器(參見表1)具有強固的負電壓特性。相比較而言,很多競爭對手僅在+25℃的環(huán)境工作溫度下定義電氣參數(shù),并不總提供溫度特征描繪,而且很多競爭對手從特征曲線中析取的電氣參數(shù)值很可能未顧及工藝變化問題。


表1:安森美半導體用于高端MOSFET驅動的硅驅動器相互參照。

方案比較及安森美半導體建議

我們以采用變壓器驅動方案和硅驅動器方案的24 V@10 A LLC半橋電路為例來比較這兩種方案。這兩種方案都采用帶雙DRV輸出的LLC控制器NCP1395,不同的是,前者采用變壓器驅動LLC轉換器的MOSFET,后者采用NCP5181驅動器IC來驅動器LLC轉換器的MOSFET。兩者的波形看上去類似,但比較高端MOSFET關閉時的波形可以發(fā)現(xiàn),驅動器IC更快速地關閉MOSFET,而且驅動IC關閉MOSFET時快70 ns,從而降低開關損耗;而在高端MOSFET導通時,驅動器IC在高端與低端MOSFET之間能夠保持安全及足夠的死區(qū)時間,優(yōu)于變壓器驅動方案。而從能效來看,在相同的輸入功率時,兩種方案的能效沒有顯著區(qū)別(詳見參考資料1)。

對于這兩種方案而言,究竟應該選擇哪種方案呢?實際上,如果精心設計的話,這兩種方案都可以。安森美半導體身為應用于綠色電子產品的首要高性能、高能效硅方案供應商,我們的建議是選擇硅芯片驅動方案,因為硅方案可以簡化布線及簡化設計,免去變壓器需要手動插入的問題,及可免除變壓器方案中諸如隔離被破壞、磁通走散、關閉后出來未預料到的振鈴等問題。而且要支持纖薄設計的話, 扁平電源中變壓器的高度是個問題,而硅芯片驅動方案則無此問題。

總結:

對于需要高能效的應用而言,采用軟開關技術的半橋拓撲結構越來越受設計人員青睞。但要驅動半橋拓撲結構中的高端MOSFET,設計人員面臨著是選擇變壓器或是硅芯片等不同驅動方案的選擇。本文分析了不同驅動方案的設計考慮因素、相關問題及解決之道,并從多個角度對比了這兩種驅動方案。盡管精心設計的話,這兩種驅動方案都可以良好工作,但安森美半導體建議選擇諸如NCP5181這樣的硅芯片驅動方案,在簡化布線及設計的同時,也可避免變壓器驅動方案的諸多問題,幫助設計人員縮短設計周期,加快產品上市進程。

參考資料:

1、半橋驅動器:采用變壓器還是全硅驅動,安森美半導體培訓教程, www.onsemi.com/pub/Collateral/HB%20-%20Half-Bridge%20Drivers,%20a%20Transformer-Based%20Solution%20or%20an%20All-Silicon%20Drive%20-%20bilingual.rev0.pdf
2、NCP5181數(shù)據(jù)手冊,http://www.onsemi.com/pub/Collateral/NCP5181-D.PDF

供稿:安森美半導體
本文地址:http://m.qingdxww.cn/thread-9425-1-1.html     【打印本頁】

本站部分文章為轉載或網(wǎng)友發(fā)布,目的在于傳遞和分享信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責;文章版權歸原作者及原出處所有,如涉及作品內容、版權和其它問題,我們將根據(jù)著作權人的要求,第一時間更正或刪除。
秒宿 發(fā)表于 2016-4-30 13:14:51
多謝分享
您需要登錄后才可以發(fā)表評論 登錄 | 立即注冊

廠商推薦

  • Microchip視頻專區(qū)
  • 利用SAM E54 Xplained Pro評估工具包演示CAN轉USB橋接器以及基于CAN的主機和自舉程序應用程序
  • 使用SAM-IoT Wx v2開發(fā)板演示AWS IoT Core應用程序
  • 使用Harmony3加速TCP/IP應用的開發(fā)培訓教程
  • 集成高級模擬外設的PIC18F-Q71家族介紹培訓教程
  • 貿澤電子(Mouser)專區(qū)

相關在線工具

相關視頻

關于我們  -  服務條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯(lián)系我們
電子工程網(wǎng) © 版權所有   京ICP備16069177號 | 京公網(wǎng)安備11010502021702
快速回復 返回頂部 返回列表
主站蜘蛛池模板: 四虎影视在线麻豆国产 | 做羞羞的事情的免费视频 | 91久久精品 | 男人天堂社区 | www色日本 | 999在线视频 | 欧美一区二区三区视视频 | 在线观看国产亚洲 | 国产亚洲精品aa在线看 | 欧美视频xxxxx | 精东影业果冻传媒 | 久久精品视频16 | 亚洲精品成人中文网 | 精品国产免费人成高清 | 国产视频网站在线 | 一区二区三区四区欧美 | 国产高清一级毛片在线人 | 色综合天天综合给合国产 | 欧美日韩在线成人免费 | 男人性天堂 | 亚洲日本天堂 | 在线观看国产一区二区三区99 | aaa一级片 | 亚洲综合色色图 | 日本在线视频免费看 | 亚洲国产成人精品青青草原100 | 四虎精品影院在线观看视频 | 日韩欧美一区二区三区中文精品 | 亚洲尹人香蕉网在线视颅 | 996热精品视频在线观看 | 狠狠狠色丁香婷婷综合久久五月 | 1024精品| 欧美日韩在线视频播放 | 亚洲片在线观看 | 敢死队4在线观看高清完整版 | 亚洲视频免费播放 | 欧美一区二区三区在线观看 | 久久亚洲日本不卡一区二区 | 亚洲热在线 | 国产一级做a爰片久久毛片男男 | 成人国产欧美精品一区二区 |