最近的一個月,在工作之中,重拾了記紙面筆記的習慣,已經整理了接近30多頁。我個人覺得,如果想要讓大腦深深記住一些知識,還是在本子上記錄和抽象比較直接;當然也需要把這些文件的索引信息以一個可以查詢的方法來整理,以方面后面的比對。 關于后面的SAE J1211的導讀,將持續相當的一段時間。為了更全面的介紹這份標準,還是從目錄開始,從其結構開始整理,然后細化至每個段落乃至每一小節,由于其是一份概要性的文件,讀起來其實需要把自己已經知曉的知識和過往的經驗,都一一填充在里面。由于內容太多,這里還是分為上集和下集比較靠譜。 上集 RATIONALE FOREWORD INTRODUCTION 這三部分已經在博文中已經涉及并翻譯部分,這里不做展開了。 TABLE OF CONTENTS 1. SCOPE 這里所涉及的部件,主要是針對modules (EEMs),在文中也提到如果用之于mechatronics, sensors, actuators和switches,也是同理性的擴展;貫穿這個標準的內容,主要是硬件和生產失效機制。 1.1 Purpose 這份標準希望建立在汽車電子開發過程中,能被全球接受的導入Robustness Validation qualification methodology概念、流程、方法、技術和工具。 2. REFERENCES 2.1 Applicable Publications 22份參考文獻,以下的幾份材料與我以前在硬件設計中使用的方法(Sneak Path Analysis、Reliability Predition、DFMEA、FTA和WCCA都一一對應),方法都是已經很系統的,就看每家企業和工程師用得怎么樣了。 Godoy, S. G. et al, Sneak Analysis and Software Sneak Analysis, J. Aircraft Vo. 15, No. 8, 1978 Ireson, W.G. et al, Handbook for Reliability Engineering and Management, McGraw-Hill 1996 IEC 60812 Analysis technique for system reliability – Procedures for failure mode and effects analysis (FMEA) IEC 61025 Fault tree analysis (FTA) SAE 2006-01-0591, “Method for Automated Worst Case Circuit Design and Analysis,” Henry Davis Jr , February 2006 2.1.1 SAE Publications SAE J1213-2、SAE J1739、SAE J1879和SAE J2628,共四份材料。 2.2 Related Publications 2.2.1 Other Publications 羅列了9份其他的材料,這兩本書還是可以參考的:《Introduction to Robust Design-Robustness Strategy》和《The Design Analysis Handbook》。 3. DEFINITIONS 3.1 Definition of Terms 39條術語定義,其中系統、溫度、Design Validation、Design Verification、Robustness Validation值得參考。 3.2 Acronyms 57個縮寫,這里補充一下,英文的縮寫還是需要在一定程度上做一些定義,否則在原理圖、需求文件和過程文件之中出現沖突就有點搞笑了。建議可以整理一個縮寫文件,把縮寫、英文和中文都整理在一塊,進行統一。 4. DEFINITION AND DESCRIPTION OF ROBUSTNESS VALIDATION 4.1 Definition of Robustness Validation RV的定義,前面已經有了。這是一個流程,用來確定產品按照既定的功能、特定的生命周期、定義好的Mission Profile(使用條件)下具備足夠的魯棒性裕度。 4.2 Robustness Validation Process 這里用的就是前文的那張圖,有幾點內容是這一段重點涉及的。 a.三個關鍵元素:對使用條件、失效結構/模式和加速模型的認知。 b.這里很強調一個,Knowledge based下,用分析方法、壓力測試來定義特定的失效機制。 c.這里很強調OEM和供應商之間的全方位信息和文件共享,基于信任和戰略機制。 5. INFORMATION AND COMUNICATION FLOW 談到信息流的問題,在圖6中定義了System=》Module=》Component的文件繼承性,也定義了設計、開發、驗證、生產和使用的過程中的信息傳遞。Communication,真是企業的根本。 5.1 Product Requirements 這里談到了一個產品的需求是從哪里來的,圖7和圖8從廣義上解釋了OEM的DRE為什么要在SOR里面寫那些約束和需求。客觀上,從汽車電子企業而言,管理其產品符合不同的OEM也有了一些基本思路。 5.2 Use of Available Knowledge 這段,大概是所有在外企工作過的工程師,去創業或者國內企業感受最為明顯的。雖然對一個企業而言,最終是靠產品賺錢來實現本身的意義的,但是企業的價值其實并不僅僅是賺多少錢。其所有的過往產品經歷和建立起來的運行機制,都是一種價值,它可以決定一個企業能走多遠、能覆蓋多大的區域。把攤子做大、鋪開是國內當前不得不做的一件事情,但是過多的項目并不能增加企業的能力和價值。工程師的價值,其實依附于這一套評估機制,所以談這方面問題,如果沒有相同的認同,其實毫無意義。 6. MISSION PROFILE 使用條件,在SOR里面是通過實驗要求來定義的,或者說各種Loads的代碼來體現的,圖9做了一個總結性的概覽。 6.1 Process to Derive a Mission Profile 在圖10中的三步結構之中,給出了做可靠性設計的最終意義,符合整車的Service Life Requirement的要求。 6.1.1 Estimation of Mission Profile for Development of EEM 6.1.2 Check Use-Cases and Use-Distribution (Refinement and Validation) 6.2 Agree Mission Profile for EEM (System Level with Module Level) 6.3 Analyze Failure Modes for Reliability of EEM 6.4 Translate to Components Life Time Requirements 6.5 Agree on Mission Profile for Components (Module Level with Component Level) 6.6 Analyze Failure Modes for Reliability of Component 6.7 Verify Mission Profile at Component Level in EEM (Module Level to Component Level) 6.8 Verify Mission Profile at EEM level in Vehicle (Module level and System Level) 6.9 Verify Mission Profile at System Level 6.10 Stress Factors and Loads for EEMs / Mechatronics 6.11 Vehicle Service Life 6.12 Environmental Loads in Vehicle 6.13 Functional Loads in Vehicle 6.14 Examples for Mission Profiles / Loads 以上的內容由于具有相當的連續性,一起寫在這里了。特別要提起的是FIGURE 12 - TREE ANALYSIS OF ENVIRONMENTAL LOADS和FIGURE 13 - TREE ANALYSIS OF FUNCTIONAL LOADS,汽車電子的邊界,通過這兩張圖幾乎一目了然了。我相信,真正把這部分工作做實的地方,國內不會很多。 下集(這部分下周末有時間來整理) 7. KNOWLEDGE MATRIX FOR SYSTEMIC FAILURES 7.1 Knowledge Matrix Definition 7.2 Knowledge Matrix Structure 7.3 Knowledge Matrix Use 7.3.1 Knowledge Matrix Use in Failure Prevention (Proactive) 7.3.2 Knowledge Matrix Use in Failure Analysis (Reactive) 7.4 Knowledge Matrix Change Control 7.5 Lessons Learned 7.6 Knowledge Matrix Availability 8. ANALYSIS, MODELING AND SIMULATION (AMS) 8.1 Introduction to the Use of Analysis, Modeling and Simulation 8.1.1 AMS Scope 8.1.2 AMS Mission 8.2 Integration of Design Analysis into the Product Development Process 8.2.1 Analysis Template for Automotive Electrical/Electronic Modules 8.2.2 CAE Analysis Reports and Documentation 8.3 Circuit and Systems Analysis 8.3.1 Purpose 8.3.2 Recommended Coverage 8.3.3 General Analysis Information Input Requirements 8.4 Categories of E/E Circuits and Systems Modeling and Simulations 8.4.1 E/E Performance and Variation Modeling 8.4.2 E/E Power and Load Analysis 8.4.3 Physical System Evaluations 8.5 EMC and Signal Integrity (SI) Analysis 8.5.1 CAE Programs for EMC and SI Analysis 8.6 Physical Stress Analysis 8.6.1 Purpose 8.6.2 Recommended Coverage 8.6.3 General Analysis Information and Input Requirements 8.6.4 Mechanical Stress Analysis 8.6.5 Thermal Stress Analysis 8.7 Durability and Reliability Analysis 8.8 Physical Analysis Methods 9. INTELLIGENT TESTING 9.1 Introduction and Motivation for Intelligent Testing 9.2 Intelligent Testing Temple 9.2.1 Capability Testing 9.2.2 Durability Testing 9.2.3 Technology-Specific Testing 9.2.4 Production Ramp-up and Mass Production 9.3 Assessment of Product Robustness in the Development Phase 9.3.1 Robustness Validation Plan Development 9.3.2 Robustness Validation Testing 9.4 Retention of Robustness during the Production Phase 10. MANUFACTURING PROCESS ROBUSTNESS AND ITS EVALUATION 10.1 Purpose and Scope 10.2 EEM Manufacturing Process 10.3 Robust Process Definition 10.4 Process Interactions 10.5 Component Process Interaction Matrix 10.5.1 CPI Matrix Development 10.5.2 CPI Matrix Assessment of Interactions 10.6 CPI Matrix Calculations 10.7 Robustness Indicator to Describe the Process Robustness 10.8 Extended Use and Scope of the Matrix Result 10.9 Preventive Actions and Side Benefits 11. ROBUSTNESS INDICATOR FIGURE (RIF) 11.1 Meaning and Need for a Robustness Indicator 11.2 RIF Diagram 11.3 Instructions for Generating a RIF 11.4 Generation of RIF 11.4.1 RIF for Durability Testing 11.4.2 RIF for Capability Testing 11.4.3 RIF for Processes 12. NOTES 12.1 Marginal Indicia |