作者:Alexandr Ikriannikov,研究員;Laszlo Lipcsei,產(chǎn)品應(yīng)用總監(jiān) ADI公司 摘要 48 V配電在數(shù)據(jù)中心和通信應(yīng)用中很常見,有許多不同的解決方案可將48 V降壓至中間電壓軌。最簡單的方法可能是降壓拓?fù)洌梢蕴峁└咝阅埽β拭芏韧蛔恪J褂民詈?a href="http://m.qingdxww.cn/keyword/電感" target="_blank" class="relatedlink">電感升級多相降壓轉(zhuǎn)換器可以大幅提高功率密度,這種方案與先進(jìn)的替代方案不相上下,同時保持了巨大的性能優(yōu)勢。多相耦合電感的繞組之間反向耦合,因而各相電流中的電流紋波可以相互抵消。這種優(yōu)勢可以用來換取效率的改善,或者尺寸的減小和功率密度的提高等。本文介紹了一個示例,其磁元件的體積和重量只有原來的1/4,使得1.2 kW解決方案符合1/8磚的行業(yè)標(biāo)準(zhǔn)尺寸,并且峰值效率高于98%。本文還重點討論了如何根據(jù)耦合電感的品質(zhì)因數(shù)(FOM)優(yōu)化48 V拓?fù)洹W⒂贒C-DC轉(zhuǎn)換領(lǐng)域的工程師將會對此感興趣。 引言 48 V配電軌通常會降壓至某個中間電壓,往往是12 V或更低,然后不同的本地負(fù)載點穩(wěn)壓器直接向不同負(fù)載提供各種不同的電壓。對于48 V至12 V降壓調(diào)節(jié)器,首選之一是多相降壓轉(zhuǎn)換器(圖1)。這種解決方案提供穩(wěn)壓VO和快速瞬態(tài)性能,很容易實現(xiàn)且成本較低。對于幾百瓦到>1 kW的功率范圍,可以考慮四相并聯(lián)。然而,高效率通常是一個優(yōu)先考慮因素,與12 V甚至5 V輸入的較低電壓應(yīng)用相比,48 V轉(zhuǎn)換器為了保持低開關(guān)損耗,開關(guān)頻率通常相對較低。這會在“伏特×秒”方面對磁元件造成雙重?fù)p害,因為已經(jīng)很明顯的電壓也會作用相對較長的時間。因此,與較低電壓應(yīng)用相比,48 V的磁元件通常體積較大,并使用多匝繞組來承受顯著提高的“伏特×秒”。48 V降壓轉(zhuǎn)換器仍然可以實現(xiàn)高效率,但整體尺寸通常相當(dāng)大,其中電感占據(jù)了大部分體積。 基本48 V至12 V ~1 kW降壓轉(zhuǎn)換器具有四相,使用6.8 μH分立電感,開關(guān)頻率為200 kHz。這四個電感是目前最大和最高的元件,占解決方案體積的大部分。本文的目標(biāo)是保持或提高此初始設(shè)計所實現(xiàn)的高效率,但顯著減小磁元件的尺寸。 常規(guī)降壓轉(zhuǎn)換器各相的電流紋波可由公式1求出,其中占空比為D = VO/VIN,VO為輸出電壓,VIN為輸入電壓,L為電感值,F(xiàn)s為開關(guān)頻率。 圖1.使用分立電感的四相降壓轉(zhuǎn)換器。 用漏感為Lk且互感為Lm的耦合電感1-7代替分立電感(DL),CL(耦合電感)中的電流紋波可表示為公式2。6 FOM表示為公式3,其中Nph為耦合相數(shù),ρ為耦合系數(shù)(公式4),j為運行指數(shù),僅定義占空比的適用區(qū)間(公式5)。 CL考慮因素 改進(jìn)的第一步是針對耦合系數(shù)Lm/Lk的幾個實際合理值繪制Nph = 4的FOM曲線(圖2)。紅色曲線Lm/Lk = 0表示分立電感的FOM = 1基線。已經(jīng)證明,漏感非常低的陷波CL (NCL)結(jié)構(gòu)一般能實現(xiàn)非常高的Lm/Lk,因此FOM值也很高。8,9然而,雖然在理想情況下目標(biāo)占空比正好位于第一陷波D = 12 V/48 V=0.25,但有必要考慮VIN和VO的某個范圍。有時候,標(biāo)稱VIN可以是48 V或54 V加上一些容差,VO可以調(diào)整為遠(yuǎn)離12 V,等等。如果占空比在D = 0.25附近的某個范圍內(nèi)變化,為使電流紋波始終受到抑制,應(yīng)選擇具有相當(dāng)大漏感的典型CL設(shè)計,而不是NCL,但FOM值仍然相當(dāng)大。假設(shè)Lm/Lk > 4,與DL基線相比,減小CL中的電感值可能使圖2中的FOM提高約6倍。減少能量存儲會直接影響所需的磁元件體積。因此,將DL = 6.8 μH降低為CL = 1.1 μH應(yīng)有利于減小尺寸。 圖2.針對一些不同Lm/Lk值,4相CL的FOM與占空比D的函數(shù)關(guān)系。突出顯示了目標(biāo)區(qū)域。 圖3.DL = 6.8 μH和CL = 4 × 1.1 μH(VIN = 48 V且Fs = 200 kHz)時的電流紋波與VO的函數(shù)關(guān)系。突出顯示了目標(biāo)區(qū)域。 圖3顯示了相應(yīng)的電流紋波,比較了VIN = 48 V和Fs = 200 kHz條件下的基線設(shè)計DL = 6.8 μH與建議的4相CL = 4 × 1.1 μH (Lm = 4.9 μH)。在目標(biāo)區(qū)域中,CL的電流紋波與DL的電流紋波相似或更小。這意味著所有電路波形的均方根相似,傳導(dǎo)損耗也相似。相同F(xiàn)s時的相同紋波還意味著開關(guān)損耗、柵極驅(qū)動損耗等也相同,因此這兩種解決方案的效率應(yīng)該非常相似(假設(shè)DL和CL電感損耗的貢獻(xiàn)相似,這是唯一的區(qū)別)。 圖4.四個DL = 6.8 μH電感(上方)被替換為CL = 4 × 1.1 μH(下方),體積減小到原來的1/4。 圖5.48 V至12 V調(diào)節(jié)第一級。元件放置在PCB正面的1/4磚輪廓內(nèi)。將所有~1 mm元件移至底部:1/8磚。 圖4顯示了設(shè)計的CL = 4 × 1.1 μH,其取代了四個DL = 6.8 μH電感。5每個DL的尺寸為28 mm × 28 mm × 16 mm,假設(shè)它們彼此間隔0.5 mm,那么尺寸為56.5 mm × 18 mm × 12.6 mm的4相CL可使磁元件體積減小到原來的1/4。圖5顯示了完整的1.2 kW 48 V至12 V調(diào)節(jié)解決方案,PCB單面上的元件位于1/4磚輪廓內(nèi)。CL尺寸和封裝經(jīng)過專門設(shè)計,兩個CL元件可以安放在行業(yè)標(biāo)準(zhǔn)四分之一磚尺寸內(nèi)。將所有~1 mm元件(FET、控制器IC、陶瓷電容等)放置在PCB底部,從而實現(xiàn)1/8磚尺寸的1.2 kW解決方案。 性能改善 當(dāng)DL = 6.8 μH電感變?yōu)镃L = 4 × 1.1 μH時,電感中的電流擺率限制也改善了6倍,這有助于改善瞬態(tài)性能。除此之外,盡管磁元件總體積減少到原來的1/4,但100°C時的電感飽和額定值提高了約2倍。 圖6顯示了建議的VIN = 48 V解決方案(輸出VO = 12 V)的瞬態(tài)性能。正如所料,對于變化的負(fù)載電流,反饋將輸出電壓調(diào)節(jié)至預(yù)設(shè)值,同時補(bǔ)償輸入電壓的任何變化。 圖6.75 A負(fù)載階躍下VO = 12 V輸出(CL = 4× 1.1 μH)時的瞬態(tài)性能。 所實現(xiàn)的效率如圖7所示,它可能是首要的性能參數(shù)。它與先進(jìn)的行業(yè)解決方案進(jìn)行了比較:48 V至12 V(固定4:1降壓)LLC,初級側(cè)和次級側(cè)均有矩陣變壓器和GaN FET。10所實現(xiàn)的滿載效率為97.6%,而基準(zhǔn)效率為96.3%。這意味著在全功率下?lián)p耗減少16.6 W,建議的解決方案實現(xiàn)了1.6倍的改進(jìn)。當(dāng)效率已經(jīng)如此之高時,損耗要降低如此大的幅度通常很難實現(xiàn)。 尺寸和效率之間的權(quán)衡當(dāng)然是可能的。圖8比較了CL = 4 × 1.1 μH(磁元件尺寸減小到DL的1/4)和更大的CL = 4 × 3 μH(電感體積僅減小到DL的1/2)的效率。物理尺寸較大的CL = 4 × 3 μH具有較高的漏感Lk = 3 μH和較大的互感Lm = 10 μH。這使得Fs可以輕松降低至110 kHz,從而大幅提升整個負(fù)載范圍內(nèi)的效率。 圖7.與1/8磚尺寸的先進(jìn)48 V至12 V解決方案的效率比較。 圖8.使用耦合電感的建議48 V至12 V解決方案的效率與尺寸權(quán)衡。 結(jié)語 利用耦合電感的優(yōu)勢,48 V至12 V解決方案將磁元件總尺寸減小到基本分立電感的1/4,以行業(yè)標(biāo)準(zhǔn)的1/8磚尺寸實現(xiàn)了1.2 kW功率。在磁元件尺寸減小4倍的同時,它保持了出色的效率性能,瞬態(tài)電感電流擺率提高了6倍,電感Isat額定值提高了2倍。 與同樣尺寸的業(yè)界先進(jìn)48 V至12 V解決方案相比,它在全功率下的損耗降低了約1.6倍。如果磁元件尺寸的減小幅度可以不那么大,效率還能進(jìn)一步提高。 同時,建議的解決方案提供出色的穩(wěn)壓輸出,可直接放在客戶母板上,并利用標(biāo)準(zhǔn)硅FET進(jìn)一步優(yōu)化成本。與之相比,采用全GaN FET的非穩(wěn)壓4:1 LLC是作為單獨模塊制造的,并使用具有多層、敏感布局和嵌入式矩陣變壓器的專用PCB。 整體性能改善體現(xiàn)了ADI耦合電感專利IP的優(yōu)勢,我們很高興將其提供給眾多客戶用于DC-DC應(yīng)用。 參考資料 1 Aaron M. Schultz和Charles R. Sullivan。“帶耦合感應(yīng)繞組的電壓轉(zhuǎn)換器及相關(guān)方法。”美國專利6,362,986,2001年3月。 2 Jieli Li。 “DC-DC轉(zhuǎn)換器中的耦合電感設(shè)計。”碩士論文,2001年,達(dá)特茅斯學(xué)院。 3 Pit-Leong Wong、Peng Xu、P. Yang和F. C. Lee。 “采用耦合電感的交錯VRM的性能改進(jìn)。”《IEEE電源電子會刊》,第16卷第4期,2001年7月。 4 Yan Dong。 “負(fù)載點應(yīng)用中多相耦合電感降壓轉(zhuǎn)換器的研究。”博士論文,2009年,美國弗吉尼亞理工學(xué)院暨州立大學(xué)。 5 Alexandr Ikriannikov。 “漏感控制得到改進(jìn)的耦合電感。”美國專利8,102.233,2009年1月。 6 Alexandr Ikriannikov和Di Yao。 “解決耦合電感中的鐵損問題。”Electronic Design News,2016年12月, 7 Alexandr Ikriannikov。 “耦合電感的基礎(chǔ)知識和優(yōu)勢。”ADI公司,2021年。 8 Alexandr Ikriannikov。 “多相DC-DC應(yīng)用中磁元件的演變和比較。”IEEE應(yīng)用電源電子會議,2023年3月。 9 Alexandr Ikriannikov和Di Yao。 “采用多相磁元件的轉(zhuǎn)換器:TLVR與CL和新穎優(yōu)化結(jié)構(gòu)之比較。”PCIM Europe,2023年5月。 10 “EPC9174-評估板。”Efficient Power Conversion Corporation。 關(guān)于作者 Alexandr Ikriannikov是ADI公司通信和云電源團(tuán)隊的研究員。他于2000年獲得加州理工學(xué)院電氣工程博士學(xué)位,在那里他跟隨Cuk博士學(xué)習(xí)電力電子學(xué)。他開展了多個研究生項目,從AC/DC應(yīng)用的功率因數(shù)校正到適用于火星探測器的15 V至400 V DC/DC轉(zhuǎn)換器。研究生畢業(yè)后,他加入Power Ten,重新設(shè)計和優(yōu)化大功率AC/DC電源,然后在2001年加入Volterra Semiconductor,專注于低壓大電流應(yīng)用和耦合電感器。Volterra于2013年被Maxim Integrated收購,Maxim Integrated現(xiàn)在是ADI公司的一部分。目前,Alexandr是IEEE的高級會員。他擁有60多項美國專利,還有多項專利正在申請中,并撰寫發(fā)表了多篇電力電子技術(shù)論文。 Laszlo Lipcsei是ADI公司通信和云電源團(tuán)隊的總監(jiān)。他擁有布加勒斯特理工大學(xué)自動化和計算機(jī)工程碩士學(xué)位。他于2000年加入O2Micro,專注于電源轉(zhuǎn)換和電池管理IC的定義和開發(fā)工作。2015年,Laszlo加入Maxim Integrated研發(fā)團(tuán)隊,率領(lǐng)團(tuán)隊開展軟件定義電池的定義和系統(tǒng)開發(fā)。他的團(tuán)隊還開發(fā)了無線BMS概念驗證電池組,并在2020年CES展會上進(jìn)行了展示。自2020年初以來,他一直專注于多相和48 V電源轉(zhuǎn)換架構(gòu)開發(fā)。Laszlo擁有50多項專利,還有多項專利正在申請中。 |