国产毛片a精品毛-国产毛片黄片-国产毛片久久国产-国产毛片久久精品-青娱乐极品在线-青娱乐精品

量子計(jì)算機(jī)和 CMOS 半導(dǎo)體的發(fā)展回顧與未來(lái)預(yù)測(cè)

發(fā)布時(shí)間:2022-9-26 17:05    發(fā)布者:eechina
作者:Coventor(泛林集團(tuán)旗下公司)半導(dǎo)體工藝和集成團(tuán)隊(duì)成員 Michael Hargrove  

原文鏈接: https://www.coventor.com/blog/qu ... future-predictions/

隨著量子計(jì)算的出現(xiàn),對(duì)外圍容錯(cuò)邏輯控制電路的需求達(dá)到了新的高度。在傳統(tǒng)計(jì)算中,信息的單位是“1”或“0”。在量子計(jì)算機(jī)中,信息單位是一個(gè)量子比特,可以描繪為“0”、“1”或兩個(gè)值的疊加(稱為“疊加態(tài)”)。

由于其高性能和低功耗,傳統(tǒng)計(jì)算機(jī)中的控制電路都基于 CMOS(半導(dǎo)體)。傳統(tǒng)計(jì)算機(jī)的“1”和“0”可以使用在室溫下運(yùn)行的 CMOS 芯片進(jìn)行操控、存儲(chǔ)和輕松讀取。如今,大多數(shù)量子計(jì)算機(jī)都在低溫下運(yùn)行,以確保量子比特盡可能長(zhǎng)時(shí)間地保持一致(處于疊加態(tài))。在量子計(jì)算機(jī)中,一致的時(shí)間通常非常短(納秒到毫秒),因此需要更多能夠執(zhí)行高速、容錯(cuò)操控的控制電路。如果傳統(tǒng)的 CMOS 控制電路可以在低溫下運(yùn)行,則可以滿足這一要求。

A.K. Jonscher 曾在《Proceedings of the IEEE》期刊上發(fā)表過(guò)題為“低溫下的半導(dǎo)體”的文章,其中首次嘗試描述低溫下的半導(dǎo)體材料[1]。他的兩個(gè)基本結(jié)論是:1) 由于“在這樣的極端溫度下進(jìn)行大規(guī)模實(shí)驗(yàn)沒有切實(shí)的技術(shù)理由”,半導(dǎo)體器件在當(dāng)時(shí)沒有重要的低溫應(yīng)用;2) “半導(dǎo)體材料在低溫下的特性與我們熟悉的較高溫度下特性有顯著不同,因此可以合理地預(yù)期,通過(guò)在這個(gè)方向上持續(xù)進(jìn)行研究和開發(fā),將會(huì)出現(xiàn)更多的器件應(yīng)用”。幾年后,IBM 開始對(duì)低溫下的半導(dǎo)體器件操控產(chǎn)生興趣[2-3]并得出結(jié)論:MOSFET 半導(dǎo)體器件在低溫下表現(xiàn)出更高的性能。低溫操控雖有優(yōu)勢(shì),但按比例縮小冷卻裝置仍然是使用基于半導(dǎo)體的控制電路的障礙。

進(jìn)入量子力學(xué)。1959 年,Richard Feynman 向科學(xué)界提出挑戰(zhàn),要求在信息處理系統(tǒng)的設(shè)計(jì)中使用量子力學(xué)。他設(shè)想了涉及量子化能級(jí)和/或量子化“自旋”(量子粒子的角動(dòng)量)相互作用的新信息系統(tǒng)和功能。這在1980 年代得到實(shí)現(xiàn),當(dāng)時(shí)證明了基于能量的量子力學(xué)方程可以代表通用的圖靈(計(jì)算)機(jī)[4]。1994 年的研究表明,(“在多項(xiàng)式時(shí)間內(nèi)”)量子計(jì)算機(jī)可以比傳統(tǒng)計(jì)算機(jī)更快地分解整數(shù)[5]。這一發(fā)現(xiàn)激發(fā)了人們對(duì)構(gòu)建量子計(jì)算系統(tǒng)的持續(xù)興趣,直到今天在眾多商業(yè)、研究和學(xué)術(shù)組織中還持續(xù)存在。

即使人們對(duì)構(gòu)建量子計(jì)算機(jī)有濃厚的興趣,但事實(shí)是,這種計(jì)算機(jī)的成功運(yùn)行目前仍然需要低溫環(huán)境,量子邏輯控制電路也需要在低溫下工作才能高效運(yùn)轉(zhuǎn)。因此,我們看到人們對(duì)基于 CMOS 的電路的低溫性能重新產(chǎn)生了興趣。

量子計(jì)算機(jī)不需要最先進(jìn)的 CMOS 電路,但 CMOS 器件在低溫和室溫下的運(yùn)行方式不同。最近研究人員分別在室溫和 4.2 開爾文溫度下,在 40nm 和 160nm 為主體的 CMOS 器件上測(cè)量了 CMOS 晶體管性能(以及相關(guān)的電流-電壓特性)(如圖1所示)。由于在這些溫度下硅中的遷移率提升,低溫下的驅(qū)動(dòng)電流也將增加。不幸的是,基底凍結(jié)等其他因素會(huì)限制在這些低溫下驅(qū)動(dòng)電流的增加。


圖1: 在 160nm(上)和 40nm(下)CMOS 中制造的 nMOS 晶體管測(cè)量電流-電壓特性。點(diǎn)狀曲線顯示室溫操控,實(shí)線顯示液氦操控,短劃虛線顯示擬合實(shí)驗(yàn)數(shù)據(jù)的 Spice 兼容模型[6]

量子計(jì)算機(jī)的控制電路目前在室溫下運(yùn)行。如前所述,由于在較高溫度下讀取量子比特的“狀態(tài)”很敏感,這可能成為一個(gè)問題。在與量子計(jì)算機(jī)一樣的低溫冷凍柜中,在低溫或接近低溫的情況下運(yùn)行 CMOS 電路,可以部分緩解這一挑戰(zhàn)。這種集成可以減少延遲并提高整體系統(tǒng)的可擴(kuò)展性。盡管存在一些二階問題,但低溫下的 CMOS 晶體管可以執(zhí)行與量子計(jì)算機(jī)一起工作所需的各種功能。這些功能包括以 I/V 轉(zhuǎn)換器、低通濾波器以及模擬信號(hào)/數(shù)字信號(hào)間的相互轉(zhuǎn)換等的執(zhí)的能力(如圖2所示)。


圖2: 以虛線圓圈為中心的硅自旋量子比特、控制和讀出信號(hào)(M、P、R、T 和 Q),以及量子點(diǎn)接觸和配套電路的簡(jiǎn)化示意圖。電壓源極在室溫下作為數(shù)模轉(zhuǎn)換器[6]

為了實(shí)現(xiàn)容錯(cuò)量子計(jì)算機(jī)系統(tǒng)的預(yù)期性能,需要可以在極低溫下運(yùn)行的新一代深亞微米 CMOS 電路[6]。通過(guò)將這一想法推演為其合乎邏輯的結(jié)果,最終得到一個(gè)量子集成電路 (QIC),其中量子比特陣列與讀取量子比特狀態(tài)所需的 CMOS 電子器件集成在同一芯片上。這種集成顯然是實(shí)現(xiàn)可擴(kuò)展、可靠性和高性能兼?zhèn)涞牧孔佑?jì)算的最終目標(biāo)。

在未來(lái)的應(yīng)用中,與量子比特之間的光通信可能也是必要的。在這種情況下,集成 CMOS電路還需要包括微米和納米光學(xué)結(jié)構(gòu),例如光導(dǎo)和干涉儀。這些類型的光學(xué)功能已在室溫 CMOS 器件上成功實(shí)現(xiàn),在未來(lái)的量子計(jì)算應(yīng)用中可能也需要在低溫下實(shí)現(xiàn)同等級(jí)別的光通信功能。

參考資料

[1] K. Jonscher, “Semiconductors at Cryogenic Temperatures”, Proceedings of the IEEE, 1964.
[2] W. Keyes, et al., “The Role of Low Temperatures in the Operation of Logic Circuitry,” Proc. IEEE, vol. 58, pp. 1914-1932, 1970.
[3] H. Gaensslen, et al., “Very Small MOSFET’s for Low Temperature operation,” IEEE Trans. Electron Devices, vol. ED-24, pp. 218-229, 1877.
[4] Benioff, “The Computer as a Physical System: A Microscopic Quantum Mechanical Hamiltonian Model of Computers as Represented by Turing Machines,” J. Stat. Phys., vol. 22, no. 5, pp. 563-591, 1980.
[5] Shor, “Algorithms for Quantum Computations: Discrete Log and Factoring,” Proc. 35th Annu. Symp. Found. Comput. Sci., Los Alamitos, CA, 1994, pp. 124-134.
[6] Charbon, et al., “Cryo-CMOS for Quantum Computing,” 2016 IEDM, pp. 343-346.

本文地址:http://m.qingdxww.cn/thread-802076-1-1.html     【打印本頁(yè)】

本站部分文章為轉(zhuǎn)載或網(wǎng)友發(fā)布,目的在于傳遞和分享信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé);文章版權(quán)歸原作者及原出處所有,如涉及作品內(nèi)容、版權(quán)和其它問題,我們將根據(jù)著作權(quán)人的要求,第一時(shí)間更正或刪除。
您需要登錄后才可以發(fā)表評(píng)論 登錄 | 立即注冊(cè)

廠商推薦

  • Microchip視頻專區(qū)
  • Dev Tool Bits——使用MPLAB® Discover瀏覽資源
  • Dev Tool Bits——使用條件軟件斷點(diǎn)宏來(lái)節(jié)省時(shí)間和空間
  • Dev Tool Bits——使用DVRT協(xié)議查看項(xiàng)目中的數(shù)據(jù)
  • Dev Tool Bits——使用MPLAB® Data Visualizer進(jìn)行功率監(jiān)視
  • 貿(mào)澤電子(Mouser)專區(qū)
關(guān)于我們  -  服務(wù)條款  -  使用指南  -  站點(diǎn)地圖  -  友情鏈接  -  聯(lián)系我們
電子工程網(wǎng) © 版權(quán)所有   京ICP備16069177號(hào) | 京公網(wǎng)安備11010502021702
快速回復(fù) 返回頂部 返回列表
主站蜘蛛池模板: 美女脱了内裤张开腿让女人添软件 | 高清国产在线播放成人 | 色综合久久88色综合天天 | 久久久久久91香蕉国产 | 香蕉国产精品 | 99re最新地址获取精品 | 国产精品久久久久9999小说 | 亚洲天堂免费在线 | 成人午夜视频在线观看 | 天天做天天爱天天爽 | 国内精品亚洲 | 国产一级特黄全黄毛片 | 四虎影院免费观看 | 亚洲不卡在线视频 | 青青青草国产线观 | 久久久亚洲精品视频 | 天天摸夜夜添夜夜添国产 | 日韩高清第一页 | 亚洲欧洲日产国码久在线观看 | 99热免费在线观看 | 亚洲日韩精品欧美一区二区一 | 麻豆成人免费视频 | 亚洲男人精品 | 欧美在线视频播放 | 免费在线观看黄 | 美女网站免费福利视频 | 久久青青热| 大吊色| 台湾黄三级高清在线观看播放 | 国产精品久久永久免费 | 亚洲黄色一级毛片 | 青青操精品 | 日产精品1卡二卡三卡乱码在线 | 欧美人禽 | 四虎精品成人a在线观看 | 天堂中文在线最新版 | 成人在线免费视频播放 | 亚洲欧美视频在线播放 | 日本我不卡 | 成视频年人黄网站免费动漫 | 中文字幕日韩精品麻豆系列 |