小波圖像編碼和分形圖像編碼是兩種不同的圖像編碼方法,二者各有其特點,又都存在一定的局限性。一幅圖像經過小波變換后,其相同方向但不同分辨率的子圖像具有較強的相似性,這種相似性正好與分形編碼的特點具有互補性。自1995年以來,Rinaldo和Calvagno首次提出并實現了一種小波與分形圖像編碼相結合的算法。此后,又出現多種小波變換與分形相結合的圖像編碼算法。這些算法,有的證明了小波域的分形圖像解碼可以通過低分辨率小波系數向高分辨率系數連續外推實現,即解碼無需循環迭代,是無條件收斂的;有的通過采用平滑小波基消除重構圖像在高壓縮比時的方塊效應;有的推導出仿射變換的收縮因子取值不受限制,能保證解碼收斂;同時小波系數的樹狀結構提供了自然高效的Domain塊分類方法等。此外,還有一些研究集中在分形塊的類別劃分以及基于小波零樹結構的分形預測等。 本文在此基礎上,通過分析基本分形圖像編碼的壓縮算法,提出一種基于小波域的分形圖像編碼改進算法。這種改進算法包括兩部分:(1)根據圖像小波分解后各子圖像包含的不同能量,考慮各子圖像所代表的方向、紋理特征等信息,對各子圖采用非均勻的分形編碼方案,即在進行小波域的分形編碼時,分形塊的選取不一定全是正方形,對于不同方向的紋理特征的小波子圖像選取不同形狀的分形塊; (2)根據圖像的小波變換系數在同一方向不同分辨率、同一分辨率不同方向之間都存在相關性,對每一圖像塊,在同一方向低一級分辨率的子帶圖像上尋找與其最佳分形匹配的相似塊,由這些相似塊形成一棵一棵預測樹,解碼端通過對預測樹的分形預測恢復出各級圖像塊。實驗證明,這種改進算法能夠大大提高分形編碼的速度,并取得較高的壓縮比。 1 基本分形編碼壓縮算法 基本分形編碼壓縮算法的主要內容:將待編碼的圖像分割成互不重疊的子塊(Range Block),稱為圖像塊R,同時將圖像分割成可以相互重疊的大一些的塊(Domain Block),稱為相似塊D。對分割后的R塊和D塊進行分類,如:變換平緩的平滑區域、變換突然的邊緣區域和變換緩和的中間型區域等,使相匹配的塊具有相同的區域性質。對分類后相同區域的每一個R塊Rj尋找可以匹配的D塊Dj,使得Dj通過仿射函數ψj可以近似于Rj,由此可以得到一組仿射變換組ψ1,ψ2…ψN,即分形迭代系統。只要該系統的變換是收斂的,且比原系統簡單,就實現了分形壓縮。基本分形編碼算法主要在圖像分割后對R塊和D塊進行搜索匹配的過程,其壓縮比較高,但是壓縮時的計算量較大,編碼壓縮時間很長。 2 基于小波域的分形圖像編碼改進算法 本文的改進算法包括兩部分:小波域分形編碼過程中分形塊形狀的選取以及分形預測樹的形成。 2.1 小波域分形編碼過程中分形塊形狀的選取 在上述基本分形壓縮編碼過程中,在確定R塊和D塊的形狀時,對各小波分解子圖取的均是正方形。由于圖像小波分解后,各子圖包含的能量有所不同,其代表的方向、紋理等特征信息也不相同,因此,可以考慮在進行小波域的分形編碼時,分形塊的選取可以不選正方形,而是依據小波分解子圖的不同方向的紋理特征選取不同形狀的子塊。 以512×512的8 bit圖1為例進行實驗,計算結果表明,不同方向的子圖由于其紋理特征信息不同,在LH、HL、HH區域中,其水平和垂直方向的相關性不相同,所以在不同方向的分解子圖像中采用不同形狀的塊進行分形編碼,可使其編碼時間更短,圖像恢復效果更好。例如,在LH區域,通過計算分析,行相關長度大于列相關長度,圖像以水平紋理為主,可采用4×2的矩形進行R塊和D塊的分割;在HL區域,行相關長度小于列相關長度,圖像以豎直紋理為主,可采用2×4的矩形進行R塊和D塊的分割;而在HH區域,行相關長度與列相關長度接近,則可以采用正方形來分割。同時,由于左上角的低頻子圖包含了圖像的大部分能量,因此仍采用2×2正方形子塊的選取,不參加計算。圖像塊的分割方法如圖2所示。應用均勻分塊和非均勻分塊的壓縮效果比較如圖3 所示。 2.2 分形預測樹的形成過程 分形預測樹的形成原理是:應用Davis把零樹的概念引入到分形圖像編碼的理論,把分形圖像編碼中的相似塊和圖像塊擴大到相似樹(Domain Tree)和圖像樹(Range Tree),從而使得相似塊與圖像塊之間的分形匹配轉化為相似樹與圖像樹之間的分形匹配。在此基礎上,可以在各級小波分解的子圖像中尋找與圖像塊R最佳分形匹配的代表塊,再由各級代表塊按照零樹結構產生一棵代表樹,通過計算比較各級圖像樹R與代表樹的距離,確定距離最小的代表樹就是圖像樹R的預測樹。 結合小波域圖像分割形狀的分析,對圖1進行如圖2所示的小波域分割,得到基于小波域的分形預測樹的形成圖如圖4 所示。具體過程是: (1) 首先對圖像進行多次小波變換,產生各個子帶圖像。通過對圖像行、列相關性的計算分析,確定各子帶小波域圖像分割的形狀。為了保證信噪比,對最低分辨率的子帶圖像LL1、HL1、LH1、HH1不編碼。 (2) 同時在水平、垂直、對角線3個方向上形成一棵一棵圖像樹,即零樹。如LH方向上的R=(R1,R2,R3,R4)就是其中一棵圖像樹,而D=(D1,D2,D3,D4)表示HL方向上的相似樹。然后在LH1中尋找與圖像塊R2最佳分形匹配的代表塊E1,再由E1按照零樹結構產生一棵代表樹E=(E1,E2,E3)。同理,在LH2中尋找與圖像塊R3最佳分形匹配的代表塊F2,并生成代表樹F=(F1,F2,F3)。在LH3中尋找與圖像塊R4最佳分形匹配的代表塊G3,并生成代表樹G=(G1,G2,G3)。 (3)分別計算圖像樹R與3棵代表樹E、F、G的距離,距離最小的代表樹就是圖像樹R的預測樹。然后將預測樹在相應層次的位置以及經歷的幾何變換和仿射變換作為圖像樹R的分形預測編碼。 (4) HL、HH方向按同樣方式編碼,只是構成的R塊和D塊的形狀大小不同。這樣,在改進算法中,編碼只需對代表樹中的一個代表塊進行分形編碼。而解碼時,又可依據這個代表塊通過零樹結構推出其他代表塊,再分形預測圖像塊R。 由于前面針對小波分解圖的能量分配特性已經采用了非均勻的分形塊形狀的選取,再結合這種分形預測編碼方法,其結果大大提高了分形編碼的速度,縮短了編碼時間,在提高壓縮比方面也取得了良好的效果。 3 實驗結果 實驗采用圖1所示圖像,分別用基本分形編碼方法和本文的改進算法進行實驗,其重建圖像如圖5所示。基本分形編碼時各子圖中圖像塊大小為4×4,相似塊大小為8×8,改進算法中對小波分解圖像塊的分割方法如圖2所示,相似塊大小取為圖像塊大小的2×2倍,實驗結果如表1所示。 本文提出基于小波域的分形圖像編碼改進算法是將小波域分形與分形預測方法相結合,由表1可知,與基本分形算法相比,在恢復圖像質量接近的情況下,壓縮比提高約2倍,信噪比下降2 dB,而編碼時間大大縮短,提高了編碼速度,表明在提高壓縮比方面,效果良好。 |