現代通訊設備、電子產品、電動車輛、UPS等普遍采用蓄電池作為電源,然而多數充電設備功能單一,通用性差,維護質量低,導致產品的使用效率大大降低。本文采用UCC3895和PIC單片機,針對常用的鉛酸蓄電池,設計開發了一種智能充電器。 UCC3895是TI公司生產的專用于PWM移相全橋DC/DC變換的新型控制芯片,可工作于電壓模式,也可工作于電流模式,并且可實現輸出脈沖占空比從0到100%相移控制,軟啟動和軟停止可按要求進行調節;內置7MHz帶寬的誤差比較放大器;具有完善的限流及過流保護、電源欠壓保護,基準欠壓保護、軟啟動和軟停止等功能。 PICl6F917型單片機與UCC3895共同組成控制器部分,相對于僅使用單片機作為控制器的方式,具有響應速度快,控制精度高,軟件設計簡單,運行穩定等優點。 1 總體結構 如圖1,充電器的供電部分采用開關電源,其輸入為220V交流市電,整流濾波后,一部分為控制電路的數字器件提供輔助工作電源和參考電壓,另一部分經全橋逆變轉換為高頻交流電,再進行高頻整流濾波,為蓄電池提供0~60V脈沖直流電。PIC與UCC3895配合構成閉環控制電路,通過比較用戶設定值和采樣得到的反饋值,在充電過程中的不同階段對逆變器進行PWM控制,同時PIC完成顯示和報警等功能。 2 硬件設計 1)主電路設計 如圖2,充電主電路采用移相控制全橋ZVT—PWM變換技術,利用功率MOS管的輸出電容和輸出變壓器的漏電感作為諧振元件,使FB—PWM變換器四個開關管依次在零電壓下導通,實現恒頻軟開關,減少了開關損耗,可保證變壓器效率達80—90%,并且不會發生開關應力過大的問題。 2)控制電路設計 控制電路分為兩部分。第一部分為前級控制器,由UCC3895及其外圍電路組成,用來生成PWM脈沖,實現對開關管的控制。第二部分為后級控制器,由PIC和TLV5618及其外圍電路組成,實現用戶設定、采樣、顯示、計時、報警、主電路通斷等充電過程的管理功能。 (1)前級控制電路 引腳電路功能分析 如圖3,腳1和腳20是誤差放大器的反相輸入端和同相輸入端,其中腳20外接Uc,Uc是后級控制器送來的輸出電壓控制信號,經隔離后,在這里作為誤差放大器的基準電壓。腳2為誤差放大器的輸出端,內接PWM比較器的非反相端,外接EA與l腳。當充電開始時,充電電流較大,取樣電流與設定電流比較后接在PWM的非反相端,從而調節PWM輸出脈沖寬度;當充電末了,充電電流較小,充電電壓變大,2腳依靠誤差放大器反饋控制調節PWM輸出脈沖寬度。 腳3為PWM比較器的反相輸入端,外接7腳和取樣電流電路。充電初始階段,充電電流較大,電路工作在峰值電流模式下,反饋信號主要由取樣電流提供,它與同相端比較后,調節PWM輸出脈沖寬度。充電中后期,充電電流變小,充電電壓穩定,電路工作在電壓模式下,該端接CT(引腳7)上的鋸齒波信號。 工作過程原理分析 充電器電壓信號由傳感器取出,加到UCC3895的1腳。充電初期,電池兩端電壓很低,充電電流很大,電路工作在峰值電流模式下,電壓反饋對控制電路影響比較小,這時電路主要靠電流反饋工作,采樣電流VI經過比較后加到PWM比較器的非反相端,IA、IB經過整流后加到PWM比較器的反相輸入端,由兩者的大小調節PWM比較器輸出脈沖的寬度(如圖4);充電中后期,電壓變大,充電電流變小,電路工作在電壓模式下,電壓信號加到誤差放大器的反相端與設定的基準值比較后送至PWM比較器的非反相端,7腳輸出的鋸齒波信號接在PWM比較器的反相端,由兩者的大小調節PWM比較器輸出脈沖的寬度(如圖5)。由芯片外圍電路可以看出,它具有兩個閉環控制調整電路,其一是電壓控制閉環電路,電壓取樣信號加在誤差放大器反相端,與后級控制器送來的同相端基準電壓比較,產生誤差信號,加在PWM比較器反相端。其二是電流控制閉環電路,輸出電流取樣信號與后級控制器送來的電流信號比較后加在PWM比較器非反相端,它與反相端信號比較后產生控制信號,從而決定輸出脈沖的寬度。 (2)后級控制電路 參數設定與顯示部分 如圖6,PIC的RD0~RD5設為輸入,外接6個按鍵,分別為4個方向鍵、確定鍵、取消鍵,用于接收用戶的參數設定值,如電池標定電壓、充電電流、充電時間,單片機將這些設定值存儲于EEPROM中。RC0~RC7設為輸出,外接顯示屏的數據端,用于顯示當前的工作狀態和用戶設定確認。 采樣部分 由于PIC的RA0~RA2可同時作A/D通道,用來接收采樣的電池電壓、充電電流、電池溫度,將其轉換為十位二進制數存儲。其中充電電流通過一個外接檢測電阻,轉換為電壓值線性計算得到,電池溫度通過溫度傳感器TC1047得到。 控制輸出與報警部分 TLV5618與單片機相連,串行接收RB0送來的代表用戶設定值的數字信號,完成DA轉換,將得到的模擬量通過OUTA(控制電壓VKV)和OUTB(控制電流VKI)輸出,為UCC3895提供基準電壓和基準電流。RB3、RB4設為輸出,用于控制主電路通斷(SWITCH)和驅動報警設備(BUZZ)。RB5設為輸入,接收報警信號(ALART)。 3 軟件設計 根據鉛酸蓄電池的充電特性,為提高充電效率,延長電池壽命,實現快速充電,本文采用三階段智能識別充電法。如表l所示,以12V鉛酸蓄電池為例,在不同溫度下各充電階段選擇不同的轉換電壓,轉換電流和浮充電壓。 1)主程序 充電主程序主要完成各功能部分的初始化、循環采樣、顯示輸出實時狀態、判斷充電階段、充電計時、故障報警等工作,其流程圖如圖7所示。 2)恒流充電階段 圖8為恒流充電階段的流程圖。單片機按照設定充電電流值控制UCC3895使主電路輸出恒定電流,根據當前溫度以查表的方式取得恒流到恒壓階段的轉換電壓,采樣電池電壓,當電池電壓超過轉換電壓時,該階段結束,進入恒壓充電階段;若未超過,繼續采樣。過程中同時判斷是否有過流(此時ALART=1)或到達設定充電時間,以確定是否停止充電。 3)恒壓充電階段 圖9為恒壓充電階段的流程圖。單片機按照當前電池電壓值控制UCC3895使主電路輸出恒定電壓,采樣電流,若電流小于浮充階段轉換值,該階段結束,進入浮充階段;若不小于,繼續采樣。過程中同時判斷是否有過壓(此時ALART=1)或到達設定充電時間,以確定是否停止充電。 4)浮充階段 該階段蓄電池已充滿,為了補充蓄電池自放電的能量損失,單片機按照表l浮充電壓值控制UCC3895使主電路輸出恒定電壓,給蓄電池一微小的充電電流,同時判斷蓄電池的充電電壓和電流,以便在恒壓充電和恒流充電階段間轉換,判斷充電時間,若充電時間到,斷開主電路(SWITCH=0,停止充電。流程圖與恒壓階段類似。 4 結束語 以UCC3895和PIC單片機為控制器設計的智能充電器,可對常用的12V~48V鉛酸蓄電池進行充電,能夠保證電池的充足率,并且保證不會過充。整個充電器體積小,結構簡單,成本低,具有良好的充電管理和維護功能,而且有利于延長電池的使用壽命,具有非常高的實用價值和推廣價值。 |