隨著芯片集成度的不斷提高,Cu已經(jīng)取代Al成為超大規(guī)模集成電路互連中的主流互連材料。在目前的芯片制造中,芯片的布線和互連幾乎全部是采用直流電鍍的方法獲得Cu鍍層。在直流電鍍中,由于金屬離子趨近陰極不斷被沉積,因而不可避免地造成濃差極化。而脈沖電鍍?cè)?a href="http://m.qingdxww.cn/keyword/電流" target="_blank" class="relatedlink">電流導(dǎo)通時(shí),接近陰極的金屬離子被充分地沉積;當(dāng)電流關(guān)斷時(shí),陰極周?chē)姆烹婋x子又重新恢復(fù)到初始濃度。脈沖電鍍的主要優(yōu)點(diǎn)有:降低濃差極化,提高了陰極電流密度和電鍍效率;改善鍍層物理性能;所得鍍層具有較好的防護(hù)性;能獲得致密的低電阻率金屬沉積層。 脈沖電鍍理論20世紀(jì)初就已被提出。近幾年來(lái),國(guó)外陸續(xù)發(fā)表了一些關(guān)于脈沖電鍍?cè)诩?a href="http://m.qingdxww.cn/keyword/電路" target="_blank" class="relatedlink">電路Cu互連應(yīng)用中的研究。目前國(guó)內(nèi),針對(duì)脈沖電鍍Cu的研究主要集中在冶金級(jí)電鍍和印刷電路板(PCB)布線方面,幾乎沒(méi)有關(guān)于脈沖電鍍應(yīng)用于集成電路Cu互連的文獻(xiàn)報(bào)道。而在集成電路(IC)制造采用的是成熟的直流電鍍工藝。PCB中線路的特征尺寸約為幾十微米,而芯片中Cu互連的特征尺寸是1μm,因此對(duì)亞微米級(jí)厚度Cu鍍層的性能研究顯得尤為必要。本文將針對(duì)集成電路芯片Cu互連技術(shù),研究分別用脈沖電鍍和直流電鍍沉積得到的Cu鍍層性能。 1 實(shí)驗(yàn)采用 200mmp型(100)Si片,首先在Si片上PECVD(conceptone200mmdielectricsystem,Novellus)淀積800nmSiO2介質(zhì)層。接著用PVD(Invoa200,Novellus)濺射25nm的TaN/Ta擴(kuò)散阻擋層,然后用PVD濺射50nm的Cu籽晶層。在電解槽中,陽(yáng)極為高純度的Cu棒,外面包裹一層過(guò)濾膜,其作用是電鍍時(shí)阻止固態(tài)不溶性雜質(zhì)顆粒進(jìn)入Cu鍍層,影響鍍層性能。將經(jīng)PVD濺射好Cu籽晶層的200mmSi片切片后的小矩形片作為陰極(5cm×2cm)。電解槽底部靠近陰極處有一個(gè)磁力攪拌子,電鍍時(shí)置于電解槽下面的磁力攪拌儀產(chǎn)生磁場(chǎng),驅(qū)動(dòng)攪拌子勻速轉(zhuǎn)動(dòng),轉(zhuǎn)速設(shè)定為400r/min,這可以使電鍍過(guò)程中陰極附近電解液中的Cu離子濃度保持正常,降低濃差極化和提高陰極電流密度,加快沉積速度。 電鍍液成分為Cu2+17.5g/L,H2SO4175g/L,C1-50mg/L,加速劑2mL/L,抑制劑8mL/L和平整劑1.5mL/L(添加劑均來(lái)自美國(guó)Enthone公司)。C1-能提高鍍層光亮度和平整性,降低鍍層的內(nèi)應(yīng)力,增強(qiáng)抑制劑的吸附。加速劑通常是含S或其他官能團(tuán)的有機(jī)物,包括硫脲及其衍生物,它的作用是促進(jìn)Cu的成核,使各晶面生長(zhǎng)速度趨于均勻。抑制劑包括聚乙二醇(PEG)、聚丙烯二醇和聚乙二醇的共聚物等,它的作用是和C1-一起在陰極表面上形成一層連續(xù)膜以阻止Cu的沉積。平整劑通常是雜環(huán)化合物,一般含有N原子,它的作用是降低鍍層表面粗糙度。 對(duì)于脈沖電鍍,考慮到鍍層與電解液界面間存在電位差,會(huì)在鍍層表面形成一個(gè)雙電層,其作用等效于一個(gè)電容,脈沖頻率如果太大,雙電層電容在脈寬和脈間內(nèi)來(lái)不及充放電,此時(shí)的脈沖電流將接近于直流電流。但如果脈沖頻率太小,電流效率就會(huì)變得很低,因此脈寬和脈間的時(shí)間一般都選在毫秒級(jí)。根據(jù)文獻(xiàn)的研究結(jié)果,固定ton=8ms,toff=2ms,研究不同平均電流密度的影響。實(shí)驗(yàn)中通過(guò)設(shè)置不同的電流密度以及相對(duì)應(yīng)的電鍍時(shí)間,將Cu鍍層厚度都較嚴(yán)格地控制在1μm。實(shí)驗(yàn)中使用方波脈沖,測(cè)量的Cu鍍層薄膜參數(shù)包括電阻率、XRD、SEM和AFM。 2 結(jié)果和討論 2.1 電阻率測(cè)量結(jié)果 圖1是電沉積Cu層電阻率與電流密度之間的關(guān)系。可見(jiàn),脈沖電鍍得到的Cu鍍層電阻率小于相同電流密度下的直流鍍層。在小電流密度時(shí)(<2A/dm2),直流鍍層和脈沖鍍層的電阻率都較大。 2.2 XRD測(cè)量結(jié)果 在XRD測(cè)量中,以晶面(hkl)的織構(gòu)系數(shù)TC(texturecoefficient)來(lái)表征晶面擇優(yōu)程度。 式中:I(hkl)、I0(hkl)分別表示沉積層試樣和標(biāo)準(zhǔn)試樣(hkl)晶面的衍射線強(qiáng)度;n為衍射峰個(gè)數(shù)。當(dāng)各衍射面的TC值相同時(shí),晶面取向是無(wú)序的,如果某個(gè)(hkl)面的TC值大于平均值,則該晶面為擇優(yōu)取向。晶面的TC值越大,其擇優(yōu)程度越高。 圖2中(a)和(b)分別為直流鍍層和脈沖鍍層織構(gòu)系數(shù)與電流密度的關(guān)系。(111)晶面抗電遷移的能力是(200)晶面的4倍,因此(111)晶面更有利于互連。兩張圖的變化趨勢(shì)類(lèi)似,主要晶面都是(111)和(200),但直流鍍層中(111)的擇優(yōu)程度較脈沖鍍層稍好。通過(guò)對(duì)Cu種籽層進(jìn)行XRD后發(fā)現(xiàn),籽晶Cu中(200)晶面呈現(xiàn)絕對(duì)擇優(yōu)。因此,XRD的結(jié)果表明,直流電鍍的晶面抗電遷移的能力要優(yōu)于脈沖電鍍。由于1μm的Cu電鍍層太薄,鍍層受到較強(qiáng)基體效應(yīng)的影響,電沉積條件對(duì)晶面的影響很小,因此籽晶層的晶面在很大程度上決定了鍍層的晶面情況。有文獻(xiàn)報(bào)道,當(dāng)Cu鍍層超過(guò)4μm后,就基本不受基體外延的影響,而主要由電沉積條件決定,形成絕對(duì)優(yōu)勢(shì)的擇優(yōu)晶面取向。 2.3 AFM測(cè)量結(jié)果 圖3為脈沖電鍍與直流電鍍電沉積Cu鍍層表面粗糙度RMS(rootmeansquare)與電流密度的關(guān)系。可見(jiàn)脈沖所得鍍層表面粗糙度僅為幾個(gè)納米,而直流所得鍍層表面粗糙度在10nm以上,最大時(shí)甚至達(dá)到了40nm,這樣大的粗糙度將為后續(xù)CMP工藝造成極大的困難。而平整的表面可以為CMP工藝提供一個(gè)易于進(jìn)行處理的基底表面,采用脈沖電鍍Cu鍍層的表面粗糙度RMS比直流電鍍的低。 2.4 SEM測(cè)量結(jié)果 圖4為脈沖電鍍與直流電鍍電沉積Cu鍍層的SEM照片。由于有機(jī)添加劑將極大地影響Cu晶粒的生長(zhǎng)過(guò)程,為了單獨(dú)考察電沉積條件對(duì)晶粒生長(zhǎng)的影響,SEM測(cè)量的是在沒(méi)有三種添加劑情況下得到的鍍層。可見(jiàn)在相同的電流密度下,脈沖所得鍍層的表面晶粒密度遠(yuǎn)大于直流。之所以會(huì)出現(xiàn)這樣的差別,原因在于脈沖關(guān)斷時(shí)間雖然對(duì)電鍍效率沒(méi)有貢獻(xiàn),但它并不是一個(gè)“死時(shí)間”。在關(guān)斷周期內(nèi)可能發(fā)生一些對(duì)電結(jié)晶過(guò)程很有影響的現(xiàn)象,如重結(jié)晶、吸脫附等。在關(guān)斷時(shí)間內(nèi),晶粒會(huì)長(zhǎng)大,這是由于晶粒在關(guān)斷時(shí)間內(nèi)發(fā)生了重結(jié)晶現(xiàn)象。從熱力學(xué)規(guī)律可知,晶粒越大越穩(wěn)定。集成電路芯片互連中通常需要較大尺寸的晶粒,因?yàn)榇蟪叽缇Я5木Я_吔巛^少,偏折電子的幾率較小,相應(yīng)的電阻系數(shù)也較小,抗電遷移能力也更強(qiáng)。 3 結(jié)語(yǔ) 本文研究了脈沖電鍍和直流電鍍所得Cu鍍層電阻率、織構(gòu)系數(shù)、晶粒大小和表面粗糙度等特性參數(shù)。實(shí)驗(yàn)結(jié)果表明,在相同電流密度條件下,脈沖電鍍所得Cu鍍層電阻率較低、表面粗糙度較小、表面晶粒尺寸和晶粒密度較大,而直流電鍍所得鍍層(111)晶面的擇優(yōu)程度優(yōu)于脈沖。脈沖電鍍對(duì)電沉積過(guò)程有著更強(qiáng)的控制能力,能降低濃差極化,改善鍍層物理性能,獲得致密的低電阻率金屬電沉積層,所得鍍層在很多性能方面優(yōu)于直流電鍍。在超大規(guī)模集成電路Cu互連技術(shù)中,脈沖電鍍將有良好的研究應(yīng)用前景。 |