本文提出了一種推挽逆變車載開關(guān)電源電路設(shè)計(jì)方案。該方案在推挽逆變-高頻變壓器-全橋整流設(shè)計(jì)的基礎(chǔ)上,利用24VDC輸入-220VDC輸出、額定輸出功率600W的DC-DC變換器,并采用AP法設(shè)計(jì)了一種高頻推挽變壓器。最后經(jīng)實(shí)驗(yàn)證明,本方案所設(shè)計(jì)的推挽變壓器特別適用于低壓大電流輸入的中小功率場(chǎng)合,達(dá)到了預(yù)期的效果。 0引言 隨著現(xiàn)代汽車用電設(shè)備種類的增多,功率等級(jí)的增加,所需要電源的型式越來越多,包括交流電源和直流電源。這些電源均需要采用開關(guān)變換器將蓄電池提供的+12VDC或+24VDC的直流電壓經(jīng)過DC-DC變換器提升為+220VDC或+240VDC,后級(jí)再經(jīng)過DC-AC變換器轉(zhuǎn)換為工頻交流電源或變頻調(diào)壓電源。對(duì)于前級(jí)DC-DC變換器,又包括高頻DC-AC逆變部分、高頻變壓器和AC-DC整流部分,不同的組合適應(yīng)不同的輸出功率等級(jí),變換性能也有所不同。 推挽逆變電路以其結(jié)構(gòu)簡(jiǎn)單、變壓器磁芯利用率高等優(yōu)點(diǎn)得到了廣泛應(yīng)用,尤其是在低壓大電流輸入的中小功率場(chǎng)合;同時(shí)全橋整流電路也具有電壓利用率高、支持輸出功率較高等特點(diǎn)。鑒于此,本文提出了一種推挽逆變車載開關(guān)電源電路設(shè)計(jì)方案。該方案在推挽逆變-高頻變壓器-全橋整流設(shè)計(jì)的基礎(chǔ)上,進(jìn)一步設(shè)計(jì)了24VDC輸入-220VDC輸出、額定輸出功率600W的DC-DC變換器,并采用AP法設(shè)計(jì)相應(yīng)的推挽變壓器。 1推挽逆變的工作原理 圖1給出了推挽逆變-高頻變壓-全橋整流DC-DC變換器的基本電路拓?fù)洹Mㄟ^控制兩個(gè)開關(guān)管S1和S2以相同的開關(guān)頻率交替導(dǎo)通,且每個(gè)開關(guān)管的占空比d均小于50%,留出一定死區(qū)時(shí)間以避免S1和S2同時(shí)導(dǎo)通。由前級(jí)推挽逆變將輸入直流低電壓逆變?yōu)榻涣鞲哳l低電壓,送至高頻變壓器原邊,并通過變壓器耦合,在副邊得到交流高頻高電壓,再經(jīng)過由反向快速恢復(fù)二極管FRD構(gòu)成的全橋整流、濾波后得到所期望的直流高電壓。由于開關(guān)管可承受的反壓最小為兩倍的輸入電壓,即2UI,而電流則是額定電流,所以,推挽電路一般用在輸入電壓較低的中小功率場(chǎng)合。 圖1:方案設(shè)計(jì)總體拓?fù)?a href="http://m.qingdxww.cn/keyword/電路圖" target="_blank" class="relatedlink">電路圖 當(dāng)S1開通時(shí),其漏源電壓uDS1只是一個(gè)開關(guān)管的導(dǎo)通壓降,在理想情況下可假定uDS1=0,而此時(shí)由于在繞組中會(huì)產(chǎn)生一個(gè)感應(yīng)電壓,并且根據(jù)變壓器初級(jí)繞組的同名端關(guān)系,該感應(yīng)電壓也會(huì)疊加到關(guān)斷的S2上,從而使S2在關(guān)斷時(shí)承受的電壓是輸入電壓與感應(yīng)電壓之和約為2UI.在實(shí)際中,變壓器的漏感會(huì)產(chǎn)生很大的尖峰電壓加在S2兩端,從而引起大的關(guān)斷損耗,變換器的效率因受變壓器漏感的限制,不是很高。在S1和S2的漏極之間接上RC緩沖電路,也稱為吸收電路,用來抑制尖峰電壓的產(chǎn)生。并且為了給能量回饋提供反饋回路,在S1和S2兩端都反并聯(lián)上續(xù)流二極管FWD. 2開關(guān)變壓器的設(shè)計(jì) 采用面積乘積(AP)法進(jìn)行設(shè)計(jì)。對(duì)于推挽逆變工作開關(guān)電源,原邊供電電壓UI=24V,副邊為全橋整流電路,期望輸出電壓UO=220V,輸出電流IO=3A,開關(guān)頻率fs=25kHz,初定變壓器效率η=0.9,工作磁通密度Bw=0.3T. (1)計(jì)算總視在功率PT.設(shè)反向快速恢復(fù)二極管FRD的壓降:VDF=0.6*2=1.2V 3推挽逆變的問題分析 3.1能量回饋 主電路導(dǎo)通期間,原邊電流隨時(shí)間而增加,導(dǎo)通時(shí)間由驅(qū)動(dòng)電路決定。 圖2:推挽逆變能量回饋等效電路 圖2(a)為S1導(dǎo)通、S2關(guān)斷時(shí)的等效電路,圖中箭頭為電流流向,從電源UI正極流出,經(jīng)過S1流入電源UI負(fù)極,即地,此時(shí)FWD1不導(dǎo)通;當(dāng)S1關(guān)斷時(shí),S2未導(dǎo)通之前,由于原邊能量的儲(chǔ)存和漏電感的原因,S1的端電壓將升高,并通過變壓器耦合使得S2的端電壓下降,此時(shí)與S2并聯(lián)的能量恢復(fù)二極管FWD2還未導(dǎo)通,電路中并沒有電流流過,直到在變壓器原邊繞組上產(chǎn)生上正下負(fù)的感生電壓。如圖2(b);FWD2導(dǎo)通,把反激能量反饋到電源中去,如圖2(c),箭頭指向?yàn)槟芰炕仞伒姆较颉D3所示為AP法設(shè)計(jì)開關(guān)變壓器電路理想工作波形。 圖3:開關(guān)變壓器電路理想工作波形圖 3.2各點(diǎn)波形分析 當(dāng)某一PWN信號(hào)的下降沿來臨時(shí),其控制的開關(guān)元件關(guān)斷,由于原邊能量的儲(chǔ)存和漏電感的原因,漏極產(chǎn)生沖擊電壓,大于2UI,因?yàn)榧尤肓薘C緩沖電路,使其最終穩(wěn)定在2UI附近。 當(dāng)S1的PWN信號(hào)下降沿來臨,S1關(guān)斷,漏極產(chǎn)生較高的沖擊電壓,并使得與S2并聯(lián)的反饋能量二極管FWD2導(dǎo)通,形成能量回饋回路,此時(shí)S2漏極產(chǎn)生較高的沖擊電流,見圖4. 圖4:S2漏極產(chǎn)生較高的沖擊電流圖 3實(shí)驗(yàn)與分析 3.1原理設(shè)計(jì) 圖5為簡(jiǎn)化后的主電路。輸入24V直流電壓,經(jīng)過大電容濾波后,接到推挽變壓器原邊的中間抽頭。變壓器原邊另外兩個(gè)抽頭分別接兩個(gè)全控型開關(guān)器件IGBT,并在此之間加入RC吸收電路,構(gòu)成推挽逆變電路。推挽變壓器輸出端經(jīng)全橋整流,大電容濾波得到220V直流電壓。并通過分壓支路得到反饋電壓信號(hào)UOUT. 圖5:推挽DC-DC變換器主電路圖 以CA3524芯片為核心,構(gòu)成控制電路。通過調(diào)節(jié)6、7管腳間的電阻和電容值來調(diào)節(jié)全控型開關(guān)器件的開關(guān)頻率。12、13管腳輸出PWM脈沖信號(hào),并通過驅(qū)動(dòng)電路,分別交替控制兩個(gè)全控型開關(guān)器件。電壓反饋信號(hào)輸入芯片的1管腳,通過調(diào)節(jié)電位器P2給2管腳輸入電壓反饋信號(hào)的參考電壓,并與9管腳COM端連同CA3524內(nèi)部運(yùn)放一起構(gòu)成PI調(diào)節(jié)器,調(diào)節(jié)PWM脈沖占空比,以達(dá)到穩(wěn)定輸出電壓220V的目的。 3.2結(jié)果與分析 實(shí)驗(yàn)結(jié)果表面,輸出電壓穩(wěn)定在220V,紋波電壓較小。最大輸出功率能達(dá)到近600W,系統(tǒng)效率基本穩(wěn)定在80%,達(dá)到預(yù)期效果。如下表1所示。 其中,由于IGBT效率損耗較大導(dǎo)致系統(tǒng)效率偏低,考慮如果采用損耗較小的MOSFET,系統(tǒng)效率會(huì)至少上升10%~15%. 注意事項(xiàng): (1)變壓器初級(jí)繞組在正、反兩個(gè)方向激勵(lì)時(shí),由于相應(yīng)的伏秒積不相等,會(huì)使磁芯的工作磁化曲線偏離原點(diǎn),這一偏磁現(xiàn)象與開關(guān)管的選擇有關(guān),原因是開關(guān)管反向恢復(fù)時(shí)間的不同>可導(dǎo)致伏秒積的不同。 (2)實(shí)驗(yàn)中,隨著輸入電壓的微幅增高,系統(tǒng)損耗隨之增大,主要原因是變壓器磁芯產(chǎn)生較大的渦流損耗,系統(tǒng)效率有所下降。減小渦流損耗的措施主要有:減小感應(yīng)電勢(shì),如采用鐵粉芯材料;增加鐵心的電阻率,如采用鐵氧體材料;加長(zhǎng)渦流所經(jīng)的路徑,如采用硅鋼片或非晶帶。 4結(jié)論 本方案利用24VDC輸入-220VDC輸出、額定輸出功率600W的DC-DC變換器,并采用AP法設(shè)計(jì)了一種高頻推挽變壓器。實(shí)驗(yàn)結(jié)果表明,本方案使輸出電壓穩(wěn)定在220V并具有一定的輸出硬度,效率達(dá)到80%,特別適用于低壓大電流輸入的中小功率場(chǎng)合。 |