邊緣檢測是圖像處理和計算機視覺中的基本問題,邊緣檢測的目的是標識數字圖像中亮度變化明顯的點。圖像邊緣檢測大幅度地減少了數據量,并且剔除了可以認為不相關的信息,保留了圖像重要的結構屬性。有許多方法用于邊緣檢測,它們的絕大部分可以劃分為兩類:基于查找一類和基于零穿越的一類。基于查找的方法通過尋找圖像一階導數中的最大和最小值來檢測邊界,通常是將邊界定位在梯度最大的方向。基于零穿越的方法通過尋找圖像二階導數零穿越來尋找邊界,通常是Laplacian過零點或者非線性差分表示的過零點。 邊緣檢測算子: 一階:Roberts Cross算子, Prewitt算子, Sobel算子, Canny算子,羅盤算子; 二階: Marr-Hildreth,在梯度方向的二階導數過零點,Canny算子,Laplacian算子。 Roberts邊緣檢測 羅伯茨算子、Roberts算子是一種最簡單的算子,是一種利用局部差分算子尋找邊緣的算子,它采用對角線方向相鄰兩象素之差近似梯度幅值檢測邊緣。檢測垂直邊緣的效果好于斜向邊緣,定位精度高,對噪聲敏感,無法抑制噪聲的影響。1963年,Roberts提出了這種尋找邊緣的算子。 Roberts算子是一種利用局部差分算子尋找邊緣的算子, 它由下式給出: 其中, 分別為4領域的坐標,且是具有整數像素坐標的輸入圖像。 Roberts算子是2 X 2算子模板。下圖所示的2個卷積核形成了Roberts算子。圖象中的每一個點都用這2個核做卷積。 Roberts邊緣算子是一個2x2的模板,采用的是對角方向相鄰的兩個像素之差。從圖像處理的實際效果來看,邊緣定位較準,對噪聲敏感。適用于邊緣明顯且噪聲較少的圖像分割。Roberts邊緣檢測算子是一種利用局部差分算子尋找邊緣的算子,Robert算子圖像處理后結果邊緣不是很平滑。經分析,由于Robert算子通常會在圖像邊緣附近的區域內產生較寬的響應,故采用上述算子檢測的邊緣圖像常需做細化處理,邊緣定位的精度不是很高。 Sobel邊緣檢測算法 索貝爾算子(Sobel operator)主要用作邊緣檢測,在技術上,它是一離散性差分算子,用來運算圖像亮度函數的灰度之近似值。在圖像的任何一點使用此算子,將會產生對應的灰度矢量或是其法矢量。 Sobel卷積因子為: 該算子包含兩組3x3的矩陣,分別為橫向及縱向,將之與圖像作平面卷積,即可分別得出橫向及縱向的亮度差分近似值。如果以A代表原始圖像,Gx及Gy分別代表經橫向及縱向邊緣檢測的圖像灰度值,其公式如下: 具體計算如下: Gx = (-1)*f(x-1, y-1) + 0*f(x,y-1) + 1*f(x+1,y-1) +(-2)*f(x-1,y) + 0*f(x,y)+2*f(x+1,y) +(-1)*f(x-1,y+1) + 0*f(x,y+1) + 1*f(x+1,y+1) = [f(x+1,y-1)+2*f(x+1,y)+f(x+1,y+1)]-[f(x-1,y-1)+2*f(x-1,y)+f(x-1,y+1)] Gy =1* f(x-1, y-1) + 2*f(x,y-1)+ 1*f(x+1,y-1) +0*f(x-1,y) 0*f(x,y) + 0*f(x+1,y) +(-1)*f(x-1,y+1) + (-2)*f(x,y+1) + (-1)*f(x+1, y+1) = [f(x-1,y-1) + 2f(x,y-1) + f(x+1,y-1)]-[f(x-1, y+1) + 2*f(x,y+1)+f(x+1,y+1)] 其中f(a,b), 表示圖像(a,b)點的灰度值; 圖像的每一個像素的橫向及縱向灰度值通過以下公式結合,來計算該點灰度的大小: 通常,為了提高效率使用不開平方的近似值: 如果梯度G大于某一閥值 則認為該點(x,y)為邊緣點。 然后可用以下公式計算梯度方向: Sobel算子根據像素點上下、左右鄰點灰度加權差,在邊緣處達到極值這一現象檢測邊緣。對噪聲具有平滑作用,提供較為精確的邊緣方向信息,邊緣定位精度不夠高。當對精度要求不是很高時,是一種較為常用的邊緣檢測方法。 Sobel算子相關代碼及Sobel邊緣檢測效果 Sobel算子并沒有將圖像的主題與背景嚴格地區分開來,換言之就是Sobel算子并沒有基于圖像灰度進行處理,由于Sobel算子并沒有嚴格地模擬人的視覺生理特征,所以提取的圖像輪廓有時并不能令人滿意。 Isotropic Sobel算子 Sobel算子另一種形式是(Isotropic Sobel)算子,加權平均算子,權值反比于鄰點與中心點的距離,當沿不同方向檢測邊緣時梯度幅度一致,就是通常所說的各向同性Sobel(Isotropic Sobel)算子。模板也有兩個,一個是檢測水平邊沿的 ,另一個是檢測垂直平邊沿的 。各向同性Sobel算子和普通Sobel算子相比,它的位置加權系數更為準確,在檢測不同方向的邊沿時梯度的幅度一致。 Prewitt邊緣檢測算法 Prewitt算子是一種一階微分算子的邊緣檢測,利用像素點上下、左右鄰點的灰度差,在邊緣處達到極值檢測邊緣,去掉部分偽邊緣,對噪聲具有平滑作用 。其原理是在圖像空間利用兩個方向模板與圖像進行鄰域卷積來完成的,這兩個方向模板一個檢測水平邊緣,一個檢測垂直邊緣。 它的卷積因子如下: 對數字圖像f(x,y),Prewitt算子的定義如下: G(i)=|[f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)]-[f(i+1,j-1)+f(i+1,j)+f(i+1,j+1)]| G(j)=|[f(i-1,j+1)+f(i,j+1)+f(i+1,j+1)]-[f(i-1,j-1)+f(i,j-1)+f(i+1,j-1)]| 則 P(i,j)=max[G(i),G(j)]或 P(i,j)=G(i)+G(j) 經典Prewitt算子認為:凡灰度新值大于或等于閾值的像素點都是邊緣點。即選擇適當的閾值T,若P(i,j)≥T,則(i,j)為邊緣點,P(i,j)為邊緣圖像。這種判定是欠合理的,會造成邊緣點的誤判,因為許多噪聲點的灰度值也很大,而且對于幅值較小的邊緣點,其邊緣反而丟失了。 Prewitt算子對噪聲有抑制作用,抑制噪聲的原理是通過像素平均,但是像素平均相當于對圖像的低通濾波,所以Prewitt算子對邊緣的定位不如Roberts算子。 因為平均能減少或消除噪聲,Prewitt梯度算子法就是先求平均,再求差分來求梯度。 該算子與Sobel算子類似,只是權值有所變化,但兩者實現起來功能還是有差距的,據經驗得知Sobel要比Prewitt更能準確檢測圖像邊緣。 Canny邊緣檢測算法 該算子功能比前面幾種都要好,但是它實現起來較為麻煩,Canny算子是一個具有濾波,增強,檢測的多階段的優化算子,在進行處理前,Canny算子先利用高斯平滑濾波器來平滑圖像以除去噪聲,Canny分割算法采用一階偏導的有限差分來計算梯度幅值和方向,在處理過程中,Canny算子還將經過一個非極大值抑制的過程,最后Canny算子還采用兩個閾值來連接邊緣。 1.Canny邊緣檢測基本原理 (1)圖象邊緣檢測必須滿足兩個條件:一能有效地抑制噪聲;二必須盡量精確確定邊緣的位置。 (2)根據對信噪比與定位乘積進行測度,得到最優化逼近算子。這就是Canny邊緣檢測算子。 (3)類似與Marr(LoG)邊緣檢測方法,也屬于先平滑后求導數的方法。 2.Canny邊緣檢測算法: step1:用高斯濾波器平滑圖象; step2:用一階偏導的有限差分來計算梯度的幅值和方向; step3:對梯度幅值進行非極大值抑制; step4:用雙閾值算法檢測和連接邊緣。 Canny算子相關代碼及Canny邊緣檢測效果 Laplace邊緣檢測算法 Laplace算子是一種各向同性算子,二階微分算子,在只關心邊緣的位置而不考慮其周圍的象素灰度差值時比較合適。Laplace算子對孤立象素的響應要比對邊緣或線的響應要更強烈,因此只適用于無噪聲圖象。存在噪聲情況下,使用Laplacian算子檢測邊緣之前需要先進行低通濾波。所以,通常的分割算法都是把Laplacian算子和平滑算子結合起來生成一個新的模板。 拉普拉斯算子也是最簡單的各向同性微分算子,具有旋轉不變性。一個二維圖像函數的拉普拉斯變換是各向同性的二階導數,定義 為了更適合于數字圖像處理,將拉式算子表示為離散形式: 另外,拉普拉斯算子還可以表示成模板的形式,如下圖所示, 拉式算子用來改善因擴散效應的模糊特別有效,因為它符合降制模型。擴散效應是成像過程中經常發生的現象。 Laplacian算子一般不以其原始形式用于邊緣檢測,因為其作為一個二階導數,Laplacian算子對噪聲具有無法接受的敏感性;同時其幅值產生算邊緣,這是復雜的分割不希望有的結果;最后Laplacian算子不能檢測邊緣的方向;所以Laplacian在分割中所起的作用包括:(1)利用它的零交叉性質進行邊緣定位;(2)確定一個像素是在一條邊緣暗的一面還是亮的一面;一般使用的是高斯型拉普拉斯算子(Laplacian of a Gaussian,LoG),由于二階導數是線性運算,利用LoG卷積一幅圖像與首先使用高斯型平滑函數卷積改圖像,然后計算所得結果的拉普拉斯是一樣的。所以在LoG公式中使用高斯函數的目的就是對圖像進行平滑處理,使用Laplacian算子的目的是提供一幅用零交叉確定邊緣位置的圖像;圖像的平滑處理減少了噪聲的影響并且它的主要作用還是抵消由Laplacian算子的二階導數引起的逐漸增加的噪聲影響。 文章資料來源: http://www.cnblogs.com/lancidie/archive/2011/07/17/2108885.html http://blog.csdn.net/augusdi/article/details/9028331 |