滾動軸承的失效模式有表面接觸疲勞、磨粒磨損、粘附磨損和腐蝕磨損,它們總是發生在軸承工作表面和表面層,顯然工作表面層的質量對軸承的可靠性和使用壽命是至關重要的。 滾動軸承工作表面質量研究包括:表面形貌分析;表面材質和表面變質層分析;表面應力狀態分析;表面磨損狀態和腐蝕狀態分析等等。 由于受到冷、熱加工條件和潤滑介質等因素的影響,INA軸承工作表面的微觀組織結構、物理、化學、力學性能等往往與其心部有很大的不同。軸承表面的微觀結構、物理、化學、力學性能發生了變化的表面層稱為表面變質層。若表面變質層是由磨削加工過程引起的就稱為磨削表面變質層。滾動軸承工作表面變質層分析是軸承表面質量分析的主要組成部分,當然也是軸承失效分析的重要組成部分之一。 依軸承工作表面磨削變質層的形成機理,影響磨削變質層的主要因素是磨削熱和磨削力的作用。 1.磨削熱 在磨削加工中,砂輪和工件接觸區內,消耗大量的能,產生大量的磨削熱,造成磨削區的局部瞬時高溫。運用線狀運動熱源傳熱理論公式推導、計算或應用紅外線法和熱電偶法實測實驗條件下的瞬時溫度,可發現在0.1~0.001ms內磨削區的瞬時溫度可高達1000~1500℃。這樣的瞬時高溫,足以使工作表面一定深度的表面層產生高溫氧化,非晶態組織、高溫回火、二次淬火,甚至燒傷開裂等多種變化。 (1)表面氧化層 瞬時高溫作用下的鋼表面與空氣中的氧作用,升成極薄(20~30nm)的鐵氧化物薄層。值得注意的是氧化層厚度與表面磨削變質層總厚度測試結果是呈對應關系的。這說明其氧化層厚度與磨削工藝直接相關,是磨削質量的重要標志。 (2)非晶態組織層 磨削區的瞬時高溫使工件表面達到熔融狀態時,熔融的金屬分子流又被均勻地涂敷于工作表面,并被基體金屬以極快的速度冷卻,形成了極薄的一層非晶態組織層。它具有高的硬度和韌性,但它只有10nm左右,很容易在精密磨削加工中被去除。 (3)高溫回火層 磨削區的瞬時高溫可以使表面一定深度(10~100nm)內被加熱到高于工件回火加熱的溫度。在沒有達到奧氏體化溫度的情況下,隨著被加熱溫度的提高,其表面逐層將產生與加熱溫度相對應的再回火或高溫回火的組織轉變,硬度也隨之下降。加熱溫度愈高,硬度下降也愈厲害。 (4)二層淬火層 當磨削區的瞬時高溫將工件表面層加熱到奧氏體化溫度(Ac1)以上時,則該層奧氏體化的組織在隨后的冷卻過程中,又被重新淬火成馬氏體組織。凡是有二次淬火燒傷的工件,其二次淬火層之下必定是硬度極低的高溫回火層。 (5)磨削裂紋 二次淬火燒傷將使工件表面層應力變化。二次淬火區處于受壓狀態,其下面的高溫回火區材料存在著最大的拉應力,這里是最有可能發生裂紋核心的地方。裂紋最容易沿原始的奧氏體晶界傳播。 2.磨削力形成的變質層 在磨削過程中,工件表面層將受到砂輪的切削力、壓縮力和摩擦力的作用。尤其是后兩者的作用,使工件表面層形成方向性很強的塑性變形層和加工硬化層。這些變質層必然影響表面層殘余應力的變化。 (1)冷塑性變形層 在磨削過程中,每一刻磨粒就相當于一個切削刃。不過在很多情況下,切削刃的前角為負值,磨粒除切削作用之外,就是使工件表面承受擠壓作用(耕犁作用),使工件表面留下明顯的塑性變形層。這種變形層的變形程度將隨著砂輪磨鈍的程度和磨削進給量的增大而增大。 (2)熱塑性變形(或高溫性變形)層 磨削熱在工作表面形成的瞬時溫度,使一定深度的工件表面層彈性極限急劇下降,甚至達到彈性消失的程度。此時工作表面層在磨削力,特別是壓縮力和摩擦力的作用下,引起的自由伸展,受到基體金屬的限制,表面被壓縮(更犁),在表面層造成了塑性變形。高溫塑性變形在磨削工藝不變的情況下,隨工件表面溫度的升高而增大。 (3)加工硬化層 有時用顯微硬度法和金相法可以發現,由于加工變形引起的表面層硬度升高。除磨削加工之外,鑄造和熱處理加熱所造成的表面脫碳層,再以后的加工中若沒有被完全去處,殘留于工件表面也將造成表面軟化變質,促成INA軸承的早期失效。 |