作者: David Karpaty 簡(jiǎn)介 放大器的仿真模型通常是利用電阻、電容、晶體管、二極管、獨(dú)立和非獨(dú)立的信號(hào)源以及其它模擬元件來實(shí)現(xiàn)的。一種替代方法是使用放大器行為的二階近似(拉普拉斯轉(zhuǎn)換),這可加快仿真速度并將仿真代碼減少到三行。 然而,對(duì)于高帶寬放大器,采用s域傳遞函數(shù)的時(shí)域仿真可能非常慢,因?yàn)榉抡嫫鞅仨毷紫扔?jì)算逆變換,然后利用輸入信號(hào)對(duì)其進(jìn)行卷積。帶寬越高,則確定時(shí)域函數(shù)所需的采樣頻率也越高,這將導(dǎo)致卷積計(jì)算更加困難,進(jìn)而減慢時(shí)域仿真速度。 本文進(jìn)一步完善了上述方法,將二階近似合成為模擬濾波器,而不是 s域傳遞函數(shù),從而大大提高時(shí)域仿真速度,特別是對(duì)于高帶寬放大器。 二階傳遞函數(shù) 放大器仿真模型的二階傳遞函數(shù)可以利用Sallen-Key濾波器拓?fù)鋵?shí)現(xiàn),它需要兩個(gè)電阻、兩個(gè)電容和一個(gè)壓控電流源;或者利用多反饋(MFB)濾波器拓?fù)鋵?shí)現(xiàn),它需要三個(gè)電阻、兩個(gè)電容和一個(gè)壓控電流源。這兩種拓?fù)浣o出的結(jié)果應(yīng)相同,但Sallen-Key拓?fù)涓子谠O(shè)計(jì),而MFB拓?fù)鋭t具有更好的高頻響應(yīng)性能,可能更適合可編程增益放大器,因?yàn)樗菀浊袚Q到不同的電阻值。 首先,利用二階近似的標(biāo)準(zhǔn)形式為放大器的頻率和瞬態(tài)響應(yīng)建模: 下載全文: ![]() |